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Abstract: In textbooks the virial theorem plays a subordinate and lateral
role. Its historical origin and derivation are here recalled. An alternative
derivation is offered from Lazare Carnot’s mechanics, which a previous pa-
per showed to be a more appropriate basic theory than Newton’s mechanics
for the kinetic theory of gases. Being related to the energy balance, the
virial theorem is more appropriately considered as the main principle of an
energetic foundation of the kinetic theory of gases, as already Linsday in-
genuously has suggested in the 50’s.
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1. Introduction

The kinetic theory of gases (KTG) was built through a long and uneven historical path.
In the “Conclusion” of his account on the history of KTG Mendoza has sadly stressed
the following consideration:

The outstanding feature of this story is that — like the dynamical theory of heat — the
kinetic theory of gases had first to break the grip of an abstruse and authoritative
mathematical theory before the simple basic physical ideas could be accepted. These
difficulties should, perhaps, be presented in their proper perspectives in our teaching
textbooks (Mendoza 1961, p. 39).

It is easy to recognize in the accused theory Newton’s mechanics, which most theorists
had predicted to be capable to include all others possible theories.

Eventually, a stable theory was achieved by Maxwell’s papers after the mid of 19"
Century. In 1860 paper he clearly illustrated the theory constituting the basis of KTG,
i.e. the theory of the collision of elastic bodies. Actually, a century and half before,
Leibniz (1698, p. 129) had suggested this theory; but its suggestion was ignored be-
cause most scholars considered one law, i.e. the conservation of energy, as not always
valid (e.g. in the case of collisions of hard bodies; in that times a hard body was consid-
ered as the ideal model of a body in order to analyse collisions). This ignorance forced
the theorists to take a long theoretical detour. In a previous paper (Drago 2014) I
showed that, rather than Newton’s formulation, L. Carnot mechanics, i.e. the accom-
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plishment of Leibniz’ contributions to mechanics, results to be the appropriate founda-
tion for the usual version of KTG. Unfortunately, also L. Carnot’s formulation was ig-
nored for a long time.

In the history of KTG a next decisive step was represented by Clausius’ 1870 pa-
per, introducing the “virial theorem” (VT). At present time this result is considered as
an addition to a theory already well-formulated. I will discuss: 1) its better derivation,
whether L. Carnot’s mechanics is more appropriate than Newton’s mechanics; 2) the
foundations of KTG, i.e. whether this “theorem” is sufficient to built this theory.

2. Derivation of the virial theorem from Newton’s continuous equation of motion

Let us recall the history of VT, which all textbooks about either Mechanics or Statisti-
cal Mechanics present in a cursorily way.'

In 1812 Clausius’ mechanistic conception of heat had led him to suspect VT. Eight
years later, he published the paper proving this theorem (Clausius 1870). In VT the ki-
netic energy is taken in mean; it is equal to the value of the virial, which is defined as
the half product of the position coordinates of each particle of a gas with the force act-
ing on it:

<X12mv’> = - 12<3fr>

(Clausius obtained VT also in the case of all forces deriving from a potential).

Clausius’ proof was reiterated almost literally by (Brush 1976, Vol. 2, sect. 11.4).%
This author adds that: 1) the equation was well known long before, but only Clausius
has justified it in a mathematical way; 2) the crucial step of the proof is an integration
by parts of a term — the main term mvr, where m is the mass, v the velocity, r the posi-
tion of the particle and an under script is understood for each component of the system
— is set equal to zero because its time integral over a long time is in mean very little;’ 3)
Clausius has exploited his theorem not for obtaining new state equations of gases in
more cases than the ideal gas, rather «in connection with his more general discussion of
the relationship between thermodynamics and mechanicsy.

van der Waals has exploited VT for obtaining the state equation of an imperfect
gas. At present VT is applied in order to obtain the equation of imperfect gas also in
more difficult cases.

We conclude that Clausius’ VT played a crucial role in completing the KTG.

! See for instance (Levi Civita, Amaldi 1922, Vol. II, pp. 424-425), (Goldstein 1959, pp. 82-85). Incidentally,
Ladera and Aloma y Pilar Leon (2010) suggest several applications to Physics’ teaching at University’s level.
% (Brush 1961, p. 598 fn. 14) lists all old papers concerning the VT.

* The latter mathematical step of the proof is the same as in Lagrange’s foundation of his formulation of
mechanics (apart the fact that here the integral is exactly null because the integration interval is null).
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3. Lazare Carnot’s formulation of mechanics as an alternative to Newton’s formulation

In the above the derivations all start by applying to an elementary component of the gas
Newton’s second law. Unfortunately, it is customary to call in a generic way “mechan-
ics” each set of formulas related to the mechanical realm and then it is attributed to
Newton. Instead, there exist at least two formulations of mechanics, Newton’s and Car-
not’s. A previous paper (Drago 2014) has shown that the remaining part of KTG is
more properly derived from L. Carnot’s formulation of mechanics, rather than New-
ton’s theory.” We repeat the essentials of this formulation as it is presented in his main
book on the subject (Carnot 1803).

First of all, one has to recall that L. Carnot declared in the preface of his book that
his formulation depends on the principle of virtual works (PVW) suitably accommo-
dated in order to deal with collision phenomena (Carnot 1803, sect.s 128-130). In fact,
this principle is independent from Newton’s mechanics (Drago 1993).

In his second book on mechanics Carnot illustrated the physical experiences sup-
porting this principle. Then he considered its particular case of Torricelli’s principle for
a system of connected bodies which are subject to gravity. He generalized past evi-
dence for the PVW, considered by him as a methodological principle.

Actually, he could proceed along a different theoretical path.

1. To assume as a methodological principle the impossibility of a perpetual motion
(this statement was stressed by him; but he wanted to prove it, rather than assume it).

2. By considering a complex mechanical system including constraints (his usual
theoretical situation) to state that no positive work can be produced by the constraints,
otherwise a perpetual motion would be possible: X2 Rds > 0, where R represents a con-
straint’s reaction, s a displacement and an underscript is understood.

3. Under this condition, the sum of the virtual works of the acting forces have to be
positive or null: £ F'ds < 0. This is the usual formula for this principle.

4. According to both L. Carnot and D’Alembert a force F means a mere short de-
notation of the product ma, where a is the acceleration and m the mass. Rather than a
force, Carnot considered mv, where v is the velocity. Carnot considered as the basic
situation a collision of bodies; a collision changes the velocity of a body according to
the equation W = V + U, where W is the velocity before, } the velocity after, and the U
the loss of velocity in consequence of the collision (Carnot 1803, sect. 130). In this no-
tations the PVW is represented by the following formula: X mUVcos UV > 0.

5. Although ignoring the vector calculus, he correctly represented the three veloci-
ties on a triangle, to which he applied his celebrated formula, called of the cosine. By
adding the masses and summing up on all particles of a gas, one obtains & mW* = %
mV? + X mU? +2 X mUVcos UV. But the last term is null owing to the principle of vir-
tual works. The result is the balance of energy: X mW’ = X mV? + ¥ mU’. The term in
U represents either kinetic energy, or potential energy or other forms of energy.

Carnot has considered the following two cases:

* Landau and Lifschitz (1960, pp. 22-24) derives it from the Lagrangian, which is less appropriate to the task
because this formulation makes use of Al
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1) the collision of plastic bodies; in such a case the final velocities are all equal to a
final velocity V; this velocity times the sum of mU is null because the latter term is null.
The result is what he called the first fundamental equation.

2) He considered a geometric motion (i.e. a motion which in the given configura-
tion of the constraints is reversible); he has multiplied it with ZmU and in the two cases
of translational and rotational motion he has respectively obtained, through calculations
of simple algebra, the other two invariants, i.e. the momentum and the momentum of
momentum.

4. L. Carnot’s formulation and KTG

At glance, Lazare Carnot’s mechanics is more appropriate to the physical situation of a
gas than Newton’s for four reasons:

1) Its main equation describes the basic phenomenon inside a gas, i.e. the discrete
collisions of the elementary components of the gas, considered as elastic bodies, just as
the particles of a gas behave; instead Newton’s equation ignores as inexistent the colli-
sions; it would be appropriate to the situation if the particles were subjected to continu-
ous forces of interaction.

2) It shares the same philosophical attitude — i.e. to see as a whole a complex sys-
tem — which is apparent in all applications of VT, e.g. to find the state equation of a
gas.

3) The introduction of a mean operation is at all unjustified in Newton’s abstract
(metaphysical) framework; instead in the Carnotian attitude it may be considered as an
additional expedient for solving the basic problem of the theory. In addition, a mean
value may be considered to be a doubly negated proposition: “It is not false that the

value is ...”, i.e. a proposition belonging to intuitionist logic; which is the same logic
on which L. Carnot’s mechanics is based, as all other theories aiming to solve a basic
problem.

4) From the mathematical viewpoint, the derivation of VT from Newton’s mechan-
ics agrees with constructive mathematics only if the time integration is on a uniformly
continuous function, which is not a case owing to the discrete variations caused by the
collisions. Hence, this derivation belongs to an Al mathematics; while the simple opera-
tions of L. Carnot’s formulation clearly agree with constructive mathematics, hence PI.

Moreover, VT is aimed to obtain gas equations; hence its theory is a problem-
based one. In sum, the choices an appropriate derivation of VT relies on the problem-
based organization of the theory (PO) and the potential infinity (PI); these choices are
the same choices of Carnot’s mechanics and moreover they are alternative to the basic
choices of Newton’s mechanics — i.e. a deductive theory from few axioms and the use
of the actual infinity of the infinitesimal analysis.
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5. An alternative derivation of the “virial theorem”

Let us notice that Clausius wanted to offer calculations according to the Newtonian
theoretical attitude. The same attitude to conform to the old paradigm is manifest in all
the papers of that time (e.g. Maxwell’s ones), owing to the reverential respect for the
English genius. The theoretical physicists have maintained a distance from the well-
known cultural origin of the subject, i.e. the Leibniz’s viewpoint as well as his theory
of collision of elastic bodies and his energy conservation (Drago 2014).

Let us recall that Newton’s theoretical framework did not include the energy bal-
ance.’ It can be derived only when the force F is a conservative one, i.e. in the case it
can be derived from a potential; in mathematical terms, only when the differential form
in the three spatial coordinates dL=F.ds is an exact differential. This is a very particular
situation. When the form is not exact, one can however search an integrating factor p
such that dL/ p is exact. Only in some particular case this move is possible. Yet, in the
case such p exists, one has to recall that in thermodynamics the similar operation leads
to consider instead of the heat, O, the entropy, [dQ/T, i.e. a completely different magni-
tude; with respect to it Q is an anthropomorphic magnitude, whereas the entropy is a
state variable. The introduction in mechanics of a magnitude JdL/ p means to consider it
as a state variable while the work L becomes an anthropomorphic magnitude; hence a
balance of energy is no more assured and hence the perpetual motion is allowed.

The usual way to remedy to this impossibility is to consider the energy balance in
Newton’s framework by appealing to the very particular case of the conservative
forces, as if they were the only ones in nature. Lagrange was the first to mislead; he
wrote that the case of conservative forces was “properly” the only one in mechanics:
«... 1t is properly the case of nature» (Lagrange 1988, p. 32). An excellent text of his-
tory of mechanics has covered this incorrect proposition by changing that word in
“probably”: «... it is probably the case of nature» (Dugas 1950, p. 328).

Actually the above two formulations of mechanics are incommensurable owing to
the differences in the two couples of choices. The very rare case of conservative forces is
not enough to give a general translation between them; it is only a very narrow bridge.
The ignorance of this fact is a source of theoretical confusion. Indeed, this fact has consti-
tuted a hindrance for KTG theorists, because they did not perceive that the most natural
way to obtain VT is to start from L. Carnot’ mechanics, based on (both the PVW and) the
energy balance. A textbook (Levi Civita, Amaldi 1923, vol. II, cap. V, p. 424-425) deals
with VT as an exercise (no. 8) concerning the PLV. The authors show that in the virial
definition ds may be equivalently considered as the distance between two molecules mu-
tually exchanging F. Their product then gives a particular case of all virtual works con-
sidered in the PVW; hence the virial derives from it. One can add that this kind of ds may
be considered as a geometric motion, because (first definition of geometric motion) its
inverse is possible, and (second definition of this motion) it does not change the mutual

° Without referring to the energy balance R.B. Linsday (1941, pp. 2-9) has characterized in an excellent way
the nature of the Newtonian theoretical framework as well as its radical difference from both statistical
mechanics and KTG.
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interaction. Hence, apart the averaging operation, VT derives from both PVW and L.
Carnot’s formulation. One more short way for the same derivation can be suggested.

In Carnot’s first book on mechanics (Carnot 1783) the Theorems of sect.s 24-26
describe the kinetic energy balance; the theorem of sect. 42 the balance of work and
kinetic energy; this is the most simple form of the VT, i.e. the equality between the ki-
netic energy with the potential energy.

At this point the general form of the VT is derived through one simple step; it is
enough to consider the mean on all the particles — this is the very novelty of VT — of the
magnitudes in the energy balance.

Clausius has considered this relationship as relevant in order to establish VT:

The theorem of the equivalence of vis viva and work can then be expressed very
simply; and in order to exhibit distinctly the analogy between this theorem and that
respecting the virial, I will place the two in juxtaposition:

(1) The sum of the vis viva and the ergal [potential energy] is constant.
(2) The mean of vis viva is equal to the virial.®

We conclude that from both a technical viewpoint and a foundational viewpoint Lazare
Carnot’s formulation represents the correct basic theory for obtaining VT.

Viceversa, the conclusive result of the historical process of KTG’s theoretical
building, i.e. VT, leads to re-evaluate L. Carnot’s theoretical framework, which was
alternative to Newton’s mechanics.

6. Two independent foundations of the kinetic theory of gases?

VT is more than a single law, rather it works as a general principle, from which it is
possible derive at least the state equation of all kinds of gas. Let us put the question:
Can the KTG be built on the VT?

In fact, (Linsday 1941, chap. V) has founded KTG on VT. From the virial equation
he derives the state equation of a perfect gas, as an instance of all equations for any
kind of gas. In his subsequent book (Linsday 1951, p. 184) he hence stated that VT:

can be used as the starting point for the kinetic theory of gases.

If the principle from which the entire theory is derived, VT, derives from the energy
balance, Newton’s mechanics is put definitely aside.

At this point a historical question is important: Why the derivation of VT from L.
Carnot’s equations was ignored although it was of a great relevance for the KTG? I see
two reasons:

® See the English translation of Clausius’ paper in (Brush 1965-66, p. 175).
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1) Along two centuries the energy balance was denied as a general law.

2) This balance was relegated to the applications to complex systems as machines,
and hence to engineers’ practice. This balance was neglected even by the historians for
a long time. Eventually a paper (Kuhn 1959) has re-constructed its difficult historical
path performed before its recognition as a general law. A more detailed historical ac-
count (Scott 1970) has illustrated a long theoretical struggle between the two theoretical
attitudes, one based on the conservation of energy and the other one on the Newtonian
atomism.

This balance was re-evaluated by the energetists in the last quarter of the 19™ Cen-
tury as the basic principle of a new theory of mechanics, that they planned in alternative
to Newton’s one. Eventually this attempt failed since it was recognized that the balance
is a one-dimensional equality, whereas Newton’s second law is a three dimensional
equality. But in L. Carnot’s mechanics it adds to the energy balance the conservation of
momentum and also the conservation of momentum of momentum, hence this formula-
tion enjoys three equations. Hence, the energetists failure was caused by their ignorance
of L. Carnot’s mechanics.

Even more surprisingly, Mach has ignored this theory, although it played a very
important role in history of physics; according to Sadi Carnot’s words (Carnot 1824, p.
8), from it originated thermodynamics, which Mach maintained to be the most impor-
tant theory for the foundations of the entire theoretical physics (Mach 1896).
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