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Abstract: At first glance, Strocchi’s formulation presents several characteri-
stic features of a theory whose two choices are the alternative ones to the 
choices of the paradigmatic formulation: i) Its organization starts from not 
axioms, but an operative basis and it is aimed to solve a problem (i.e. the 
indeterminacy); moreover, it argues through both doubly negated proposi-
tions and an ad absurdum proof; ii) It put, before the geometry, a polyno-
mial algebra of bounded operators; which may pertain to constructive 
Mathematics. Eventually, it obtains the symmetries. However one has to 
solve several problems in order to accurately re-construct this formulation 
according to the two alternative choices. I conclude that rather than an al-
ternative to the paradigmatic formulation, Strocchi’s represents a very inter-
esting divergence from it. 
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1. Strocchi’s Axiomatic of the paradigmatic formulation and his criticisms to it 

Segal (1947) has suggested a foundation of Quantum Mechanics (QM) on an algebraic 
approach of functional analysis; it is independent from the space-time variables or any 
other geometrical representation, as instead a Hilbert space is. By defining an algebra of 
the observables, it exploits Gelfand-Naimark theorem in order to faithfully represent this 
algebra into Hilbert space and hence to obtain the Schrödinger representation of QM. In 
the 70’s Emch (1984) has reiterated this formulation and improved it. Recently, Strocchi 
improved it much more.  

First, Strocchi has suggested an axiomatic of the paradigmatic Dirac-von Neumann’s 
formulation of QM (= DvNQM).  

Axiom I. States. The states are represented by rays (or matrices) in a Hilbert space 
[…]. Axiom II. Observables. The observables of a quantum mechanical systems, i.e. 
the quantities which can be measured, are described by the set of bounded self-
adjoined operators in a Hilbert space H […] Axiom III. Expectations [of an experi-
ment applying an operator to a state ω] is given by the Hilbert space matrix element 
<Aω> = (Ψω, A Ψω) […] Axiom IV. Dirac canonical quantization. The operators 
which describe the canonical coordinates qi and moment pi, i = 1,... s of a quantum 
system of 2s degrees of freedom obey the canonical commutation relations. [qi, qj] = 
0 = [pi, pj]. [pi, qj] = I h/2π δij […] Axiom V. Schrödinger representation. The [previ-
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ous] commutation relations… are represented by the following operators in the Hil-
bert space H = L2(Rs, dx): qi ψ(x) = xi ψ(x); pjψ(x) = ih/2π ꝺψ/ꝺxj (x) (Strocchi 2012, 
pp. 1-3). 

To this formulation Strocchi addresses two basic criticisms. First, a weak linkage with the 
experimental basis of theoretical physics.  

The Dirac-von Neumann axioms provide a neat mathematical foundation of quan-
tum mechanics, but their a priori justification is not very compelling, their main 
support, as stressed by Dirac, being the a posteriori success of the theory they lead 
to. The dramatic departure from the general philosophy and ideas of classical phy-
sics may explain the many attempts of obtaining quantum mechanics by a defor-
mation of classical mechanics or by the so-called geometric quantization. Thus, a 
more argued motivation on the basis of physical considerations is desirable (Strocchi 
2012, p. 3). 

2. The operative starting point of Strocchi’s formulation 

Strocchi declares in the following terms his starting point for constructing a new theory:  

The discussion of the principles of QM gets greatly simplified, from a conceptual 
point of view, if one first clarifies what are the [physical] objects of the [subsequent] 
mathematical formulation (Strocchi 2012, p. 3). 

These objects are essentially the physical apparatuses and the physical operations, which 
neither Segal nor Emch discussed. Hence, as a first step, Strocchi replaces for previous 
Axioms I and II of DvNQM a detailed analysis of the experimental basis of theoretical 
physics so that he suggests a clearly operative support to the notions of operator A, state 
ω and expectation. In particular, he relates the boundedness of all operators of Segal’s 
algebraic approach to the experimental constraint of all physical measurements, i.e. to 
give finite results only. 

3. Justifying a C*-algebra for QM: Strocchi’s Axiom A 

However, his analysis meets some difficulties in operationally justifying the wanted C*-
algebra.1 He has to define the sum of disparate operators; potential and kinetic energy is a 
classical sum; but e.g. mass and force, or temperature and volume both appear as idealis-
tic operations (the product of two operators is not defined in order to later take in account 
the non commutativity). Strocchi honestly admits that his work is only partially success-
ful. Thus, we skip to his unique Axiom 

 
1 A C*-algebra is a Banach algebra on a complex field, together an involution * with the property ‖A*A‖ = 
‖A2‖ .A Banach algebra is a linear associative algebra over the field C of the complex numbers with a norm ‖ ‖. 
A norm is essentially a bound; more precisely, it is a function which assigns a strictly positive length or size 
to each vector in a vector space. 
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The following Axiom [...] partly goes beyond the implications of the operational 
analysis discussed so far; however, in our opinion, it represents a more physically 
motivated alternative to Dirac-von Neumann axiom II. All the preceding discussions 
and arguments are meant to provide a[possible] physical justification of such an axi-
om and are completely summarized and superseded by it. An indirect justification of 
it as a property of the description of a general physical systems is that it is satisfied 
by both CM and QM.  

Axiom A. The observables generate a [polynomial] C*-algebra A , with identity [...]; 
the states which by eq. (2.1) define positive linear functionals on the Algebras AA ⸦ 
A, for any observable A, separate such algebras in the sense of eq. (2.6) and extend 
to positive linear functional on A (Strocchi 2012, p. 6).  

As an important consequence of this axiom, the ambiguity about hermiticity and self-
adjointness of the operators in DvNQM2 is cancelled because for bounded operators her-
miticity implies self-adjointness (Strocchi 2012, p. 2). This result solves the question, 
discussed by (Emch 1984, pp. 378-379), why to bound the C*-algebra to self-adjoint ope-
rators only. 

4. Relationship of C*-algebra with Hilbert space 

Then Strocchi exploits the mathematical advancement by the Gelfand-Naimark-Segal 
theorem (GNS) for recovering the Hilbert space and hence the geometrical description of 
a physical system. This application of the C*-algebra replaces the above Axiom III of 
DvNQM.  

From the point of view of general philosophy, the picture emerging from the Gel-
fand theory of abelian C*-algebras has far reaching consequences and it leads to a 
rather drastic change of perspective [in theoretical physics]. In the standard descrip-
tion of a physical system the geometry comes first: one first specifies the coordinate 
space (more generally a manifold or a Hausdorff topological space), which yields 
the geometrical description of the system, and then one considers the abelian algebra 
of continuous functions on that space. By the Gelfand theory [instead] the relation 
can be completely reversed: one may start from [an algebra, i.e.] the abstract abelian 
C*-algebra, which in the physical applications may be the abstract characterization 
of the observables, in the sense that it encodes the relations between the physical 
quantities of the system, and then one reconstructs the Hausdorff space such that the 
given C*-algebra [with identity] can be seen as the C*-algebra of continuous func-
tions on it. In this perspective, one may say that the algebra comes first, the geome-
try comes later […] (Strocchi 2010, p. 15). 

 

 

 
2 An operator A is adjoint if there is A* such that (Ax, y) = (x, A*y), where * is the involution. It is self-
adjoint if A = A*. 
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In conclusion, from the above considerations it follows that the right language for 
the mathematical description of quantum systems is the theory of (non-abelian) C*-
algebras and as such the mathematical structure of quantum mechanics can be 
viewed as a chapter of that theory (Strocchi 2010, p. 42). 

5. The representation of the principle of indeterminacy and Dirac’s quantization 

Strocchi second criticism to the axiomatic of DvNQM is the obscurity about the separa-
tion mark between classical mechanics and QM. He underlines that nothing obstructs to 
represent a classical system inside Hilbert space. The only difference is that  

Classical mechanics results in a Hilbertian description which is equivalent to one in 
terms of an algebra of functions, whereas this kind of algebra is impossible when the 
observables do not commute [since two mutually interfering variables cannot be 
governed by the notion of a function] (Strocchi 2012, p. 9). 

The quantum characterization enters through the Axiom IV, concerning the non-commu-
tativity of the two conjugate observable defining a states. Actually, this quantum/classical 
distinction was blurred for a long time because the status of the principle of indetermina-
cy was unclear to most physicians. In 1947 Segal had still to write that he had  

To confute the view that the indeterminacy principle is a reflection of an unduly 
complex formulation of Quantum mechanics and to [strength] the view that the 
principle is quite intrinsic in physics, or in an empirical science based on quantita-
tive measurement (Segal 1947, p. 931). 

About non-commutativity first Strocchi remarks that the usual mathematical relations are 
not valid for finitely measurable operators, essentially because a sharp measurement of 
one observable (e.g. Δp = 0 exactly) ought to have in correspondence an infinite value of 
the other observable; yet, this value cannot be operationally obtained (Strocchi 2012, p. 
8). Hence, he evaluates as insufficient Born’s and Heisenberg’s experimental justifica-
tions for these relations. Rather, he advances reasons of experimental methodology for 
suggesting a new mathematical version of them (called by him “complementarity rela-
tions”):  

Δω(A) + Δω(B) ≥ C > 0 for all ω 
where Δ is the mean square deviation. Notice that this relation is not the mere logarithm 
of the previous one because it may differ at the infinity points. 

This provides a precise operational and mathematical formulation of complementa-
rity with the advantage, w.r.t. the Heisenberg uncertainty relations, of being mean-
ingful and therefore testable for operationally defined observables, necessarily rep-
resented by bounded operators [...] (Strocchi 2012, p. 8). 

In particular, he proves that his version is more effective than Heisenberg’s in the case of 
the two components s1 and s3 of momenta of spin ½ (Strocchi 2012, p. 9). 
Second, Strocchi recalls the insufficient justification of Dirac canonical quantization, ob-
tained by a mere analogy with classical Mechanics and not always valid. He re-formu-
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lates it according to an algebraic comprehensive approach of Classical mechanics and 
QM. By starting from a free C*-algebra,3 he directly obtains two cases of quantization 
through a dichotomic variable Z, whose values Z = 0 and Z = ih/2π respectively corre-
spond to classical Mechanics and QM; moreover, it proves that no other cases are possi-
ble beyond the above two. This result about quantization replaces previous Axiom IV of 
DvNQM (Strocchi 2010, pp. 10-11). 

6. Schroedinger representation. Symmetries 

Axiom V of DvNQM gives the Schrödinger representation inside Hilbert space. In SQM 

Schrödinger QM follows from the von Neumann uniqueness theorem (Strocchi 
2008, p. 4th of the cover). 

through the canonical commutators relations. SQM includes the symmetries too, as it is 
shown in the case of the dynamics in a one-parameter group of *-automorphisms of A. In 
order to take in account the unboundedness of the operators, in this case he defines (ra-
ther than Heisenberg algebra) the Weyl algebra of the two variables, p and q, defining the 
state of a particle.  

For finite degrees of freedom, the Weyl algebra codifies the experimental limitations 
on the measurements of position and momentum (Heisenberg uncertainty relations) 
[…] (Strocchi 2008, p. 4th of the cover).  

And the symmetries easily follow from von Neumann theorem on the uniqueness of all 
regular, irreducible representations of Weyl C*-algebra. 

In sum, through the technique of the representations of C*-algebra, or better the 
Axiom A only, he has obtained a complete formulation of both QM and classical Me-
chanics. At last, Strocchi summarizes his formulation through the following features: 

In conclusion, the operational definition of states and observables motivates the 
physical principle or axiom that, quite generally the observables of a physical (not 
necessarily quantum mechanical) system generate a C*-algebra. The Hilbert space 
realization of states and observables (Dirac-von Neumann Axioms I-III) is then [ob-
tained as] a mathematical result. The existence of observables which satisfy the op-
erationally defined complementarity relations implies that the algebra of observables 
is not Abelian and it marks the difference between CM and QM. Thus, for a quan-
tum mechanical system the Poisson algebra generated by the canonical variables 
[i.e. the algebraic-differential relationships between the variables] cannot be repre-
sented by commuting operators [owing to the indetermination relationships] and ac-
tually canonical quantization (Axiom IV) follows from general geometrical struc-
tures. The Schrödinger representation (Axiom V) is selected by the general properties 
of irreducibility and regularity. The general setting discussed so far may then pro-

 
3A free algebra is the non commutative analogue of a polynomial ring since its elements may be described as 
“polynomials” with non-commuting variables. 
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vide a more economical and physically motivated alternative to the Dirac-von Neu-
mann axioms for the foundation of quantum mechanics (Strocchi 2012, p. 12). 

7. Strocchi’s formulation as a PI theory. The lacking characteristic features  

Hilbert space of (square summable) functions of calculus clearly represents the AI choice. 
Instead, Segal’s suggestion, being based on an algebraic approach, whose historical tradi-
tion relies on constructive mathematical tools, promises an entirely new foundation of 
QM. As a fact, Strocchi’s works suggest an at all new formulation of QM which before 
put the algebra and later the geometry, as also Heisenberg’s formulation of QM did. With 
respect to the expectations of a quantum measurement this approach deals first with the 
operators, rather that the states, as Hilbert space does; this choice leads to stress the ex-
perimental characteristic feature of the entire formulation, in particular Heisenberg’s 
principle, which Strocchi represents according to a more appropriate mathematical for-
mula which avoids infinities. At last, its theoretical development obtains through Weyl 
algebra the mathematical technique of the PI&PO theories. In the literature on the QM 
that I know, I have found no one formulation presenting these merits; only Weyl formula-
tion presents symmetries, yet introduced in an approximate way. For these reasons one 
may suppose that Segal’s tradition represents an unaware and incomplete attempt elicited 
by many scholars to achieve a formulation of QM which is based on constructive mathe-
matics. In particular, SQM looks as a good basis for searching a constructive (PI) formu-
lation of QM.  

In view of improving it as an entirely constructive formulation one has to discover 
the constructive counter-parts of the following steps of this theory: 

 
1) Segal’s tradition assumes the boundedness of each physical variable. This as-

sumption is necessary in order to obtain a C*-algebra of the observables; it 
assures both the hermiticity of all operators and moreover the solutions of all 
relevant, differential equations (Pour-El Richards 1989). Strocchi tries to jus-
tify this thesis of boundedness through an operational analysis of experi-
mental physics. In my opinion this thesis remains as questionable on an epis-
temological basis. This objection to his thesis challenges Strocchi’s criti-
cisms to the dominant formulation.  

2) The mathematical definition of a C*-algebra. It there exists, provided that one 
accepts the apartness definition (See Bishop Bridges 1986, chp. 7, p. 157; 
Takamura 2005, p. 81). 

3) GN theorem. In the case of Abelian algebras; its constructive counter-part 
was obtained by (Bridges 1979, sect. 6.7; Tanaka 2005, p. 289) through a 
slightly different notion of norm. Instead, in the case of a non-Abelian alge-
bra, that is necessary for QM, to find a solution seems hopeless (Bridges 
2017).  
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4) The argument of the ad absurdum proof (AAP) in the next sect. requires to 
derive from a polynomial C*-algebra a C*-algebra of general functions. 
Open problem.  

5) The Dirac quantization through Strocchi’s free algebra. Open problem. 
6) The introduction of both Heisenberg and Weyl algebras and groups in the 

case of a finite number of observables. Open problem. 
7) Von Neumann theorem (all regular irreducible representation of Weyl C-

*algebras are unitarily equivalent). Open problem. 
 
The difficulties presented by the above unsolved problems seem formidable.  

8. Strocchi’s formulation as a PO theory. The lacking characteristic features  

An accurate inspection of SQM shows that it shares several characteristic features of a 
PO (see Drago 2012).  
 

1) First of all, he argues by means of the intuitionist logic, inside which the law 
of double negation fails. Indeed, he makes use of doubly negated proposi-
tions whose corresponding affirmative propositions lack of evidence or are 
false (DNPs). In the following, I will spent some space for listing the DNPs 
occurring in (Strocchi 2012):4 

a) t is impossible to measure coherent superpositions of states belonging to different 
superselection sectors. [≠ one measures coherent superpositions of states inside a 
single sector] (Strocchi 2012, p. 2).  
b) Thus, if two states defined by two apparently different preparation procedures 
yield the same results of measurements for all observables, i.e. expectations, from an 
experimental point of view they cannot be considered as physically different [≠ they 
are the same] ... [to be cont.ed]. 
c) [...] since there is no measurement which distinguishes them [≠ the results of all 
measurements are equal] (Strocchi 2012, p. 3).  
d) Similarly [...] there is no available operational way to distinguish them [≠ all op-
erations give the same result] (Strocchi 2012, p. 3).   
e) […] the in-evitable limitations in the preparation of states and measurements of A 
in general preclude the possibility of obtaining sharp values of A, i.e. Δω(A) = 0..[≠ 
the freedom of preparations [...] gives [...] sharp values of …] (Strocchi 2012, p. 8).  
f) Experimental principle […] For any given observable A, one can correspondingly 
prepare states for which a sharp value may be approximated as well as one likes 
[Here the nature of DNP is given by the point underlined words; they are equivalent 
to “beyond any bound”; ≠ at the infinity] (Strocchi 2012, p. 8). 

 
4 In the following I will underline the negative words inside a DNP in order to make apparent its logical 
nature. Notice that the modal words are equivalent to a DNP (e.g. may: “it not false that it is the case that…” 
They will be point underlined. 
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g) This means that it is impossible to have a direct [= non mediated] experimental 
check of the uncertainty relations [≠ one has a mediated experimental check of the 
uncertainty relations] ... [to be cont.ed]  
h) [...] since one only [= not otherwise ≠ surely] measures bounded functions of the 
position and the momentum (Strocchi 2012, p. 8). 

A last proposition of this kind is presented by Strocchi when he introduces a crucial no-
tion. Consistently with the PO model of a theory, he proceeds in a heuristic way in order 
to look for the mathematical version of the uncertainty relations. In addition, his main 
result (the proposition 2.8) is a DNP as it will be proved in the following. In a first time 
he suggests the new definition of complementarity through a negative word:  

Definition 2.7. Two observable A, B are called complementary if the following 
bound holds  

Δ (A) + Δ (B) > 0” (Strocchi 2012, p. 8) 
Then he states the DNP:  

i) Proposition 2.8. If the above experimental principle holds, given a representation π 
of A the existence of two observables π(A), π(B) which are complementary, implies 
that the C*-algebra A(A,B) generated by π(A), π(B) cannot be commutative [≠ two 
observables with A (A) + Δ (B)= 0 commute] (Strocchi 2012, p. 9).5  

The given problem is not considered as solved without showing the relation between the 
old and the new notions. First, he relaxes the previous limitation of the observables to be 
represented by polynomial functions.  

The relation between complementarity and non-commutativity is easily displayed if 
one realizes that in each irreducible representation π(A) of the algebra of observables 
one may enlarge the notion of observables by considering as observables the weak 
limits of any Abelian C*-subalgebra B ⸦ π(A). Technically, this amounts to consider 
the von Neumann algebra B w generated by B; one may show that the former con-
tains all the spectral projections of the elements of B. In the Gelfand representation 
of the Abelian C*-algebra B by the set of continuous functions on the spectrum of B, 
such weak limits correspond to the pointwise limits of the continuous functions. 
They are operationally defined by instruments whose outcomes yield the pointwise 
limits of the functions defined by the measurements of the elements of B.  

This means that one recognizes as observables not only the polynomial functions of 
elements B belonging to B and therefore by norm closure the continuous functions 
of B, but also their pointwise limits (Strocchi 2012, p. 9).  

2) Strocchi argues through an AAP. Indeed, the relationship between the two 
above relations is stated by means of an AAP, exactly the way of reasoning 

 
5 Notice that the second negative proposition is not a mere explanation of the first negative proposition, 
because they are different, physical the former one and mathematical the latter one.  
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of a PO theory. The argument can be summarized in the following way. By 
calling “complementarity of A,B” Cp and their “commutativity” Cm, he 
wants to prove that when Cp holds true then ¬Cm follows. He starts by ne-
gating the thesis, ¬¬Cm, which describes a situation where both π(A) and 
π(B) (according to a von Neumann’s theorem) can be written as functions of 
C, i.e. in this case the C*-algebra is an algebra of functions. Hence, in this 
algebra the classical logic holds true, and thus ¬¬Cm → Cm. His arguing ob-
tains that Cm → ¬Cp, i.e. the negation of the starting hypothesis, an absurd. 
Hence, it is not possible that Cm → Cp, or, ¬(Cp → ¬Cm), i.e. the new no-
tion Cp surely grasps more content than the old notion Cm.6  

3) He lucidly bases his theory on the problem of how our knowledge can over-
come the unavoidable uncertainty of the measurements of two conjugate ob-
servables.  

 
The main problem is the precise interpretation of the principle [of non commutativity of 
conjugate variables] in terms of unambiguous experimental operations and its precise ma-
thematical formulation (Strocchi 2012, p. 15). 
 

4) Yet, the above AAP concerns the relationships of the experimental basis of 
QM with DvNQM, not the conclusion of the theoretical development of 
SQM as solving this problem. Hence, one has to organize anew the original 
development of SQM by basing it on the above problem, at the cost to 
change some its parts. In fact, the actual starting point of his formal devel-
opment of SQM is the Axiom A; Strocchi admits that it is not enough suffi-
ciently supported by his “preliminary basic consideration” (Strocchi 2012, p. 
6). However, nothing opposes to consider the Axiom A as a methodological 
principle in the aim at solving the above basic problem in suitable circum-
stances (see the similar L. Carnot’s change of the common inertia principle; 
Drago1988). In such a case SQM is relying upon no more than the mathe-
matical content of i.e. the polynomial C*-algebras of the observables. The 
boundedness postulate is then admissible, since an algebraic approach does 
not require the usual idealization of the experimental results by a theoretical 
physicist; usually, since wants to operate with real numbers and functions, 
the latter one extrapolates from a finite collection of experimental data a real 
function, including its points at infinity. Instead, a theorist following the al-
gebraic approach can without problems assume the experimental data in their 
boudedness. That amounts to avoid the AI assumption on the experimental 
data for instead bounding the theoretical development to the PI. Moreover, to 
choose PO allows to start from a finite set of experimental data and hence to 
state a bound to all their values. These considerations solve the question 1) of 
previous section. 

 
6 Incidentally, in classical logic the proved formula Cp → ¬Cm is classically equivalent to ¬Cp ⱱ 
¬Cm = ¬Cm ⱱ ¬Cp = Cm →¬Cp.  
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5) However, one has to suggest a theoretical development where one makes use 
of more DNPs than those used by Strocchi.  

6) Moreover, one has to invent a chain of AAPs (including the previous AAP of 
SQM), concerning the resolution of the basic problem. 

7) The resolution of the basic above problem is given by the Dirac quantization, 
that Strocchi obtains as a mathematical consequence of his C*-algebra. This 
suffices for closing the kinematics of QM; which through the GNS theorem 
includes Hilbert space.  

8) At last, one has to apply to the conclusion of the final AAP the principle of 
sufficient reason for translating this conclusion in an affirmative proposition; 
from which one has then to obtain the symmetries. 

 
In sum, in order to change SQM into a PI&PO theory one has to invent a great part of the 
wanted theory. The task is hard, but a priori not impossible.  

All in all, although SQM shares several characteristic features of both choices PI 
and PO, at present time it is far from being an alternative theory to DvNQM, although its 
distance is the minimal one among the formulations I have already examined.  

I conclude that rather than an alternative to the paradigmatic formulation, the pre-
sent SQM represents a very interesting divergence from it.  
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