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Abstract: “Science is mathematics”. This proposition is contemporaneously 
false and true. Establishing its truthiness depends on the meaning given to 
the terms science and mathematics. If they are considered as historical 
categories, the proposition is clearly false. Today mathematics is considered 
as distinct from science; the former being essentially rational, the latter 
making necessarily recourse to experience. In the past mathematics had a 
more variegate meaning than today. It comprehended some parts that we 
can call science – modern meaning; for instance, mechanics, astronomy. 
Science was instead only a theoretical discipline, not necessarily related to 
experience and thus differed from mathematics. “Science is mathematics” 
may become true if mathematics is understood with its ancient meaning and 
science with its modern meaning. Notice, however, that there are sciences 
(modern meaning) that are not mathematics (ancient meaning). They are, 
for instance: linguistics, anatomy, botanic and other disciplines that make a 
limited recourse to the category of quantity. They can become mathematics 
only if the meaning of mathematics is enlarged to include logic.  
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1. Mathematicians and science 

For mathematician I mean the scholar who knew mathematics, in the modern sense, but 
that also was busied by other; first of all applied mathematics or mixed mathematics –  
with a Renaissance terminology – that is music, optics, astronomy and mechanics. But 
he could also take care of medicine, architecture, etc. Mathematician, in this sense, is a 
term used from 1500 to 1700. In this sense, modern engineers, physicists, chemists and 
mathematicians can be qualified as mathematicians.

With a strong enough expression, I hope not trivial, it can be said that 
mathematicians were by far the proponents of science, as we know it today. At least for 
the part that goes under the name of exact science. The role of professional 
philosophers – not of philosophy in a broad meaning –, especially the philosophers of 
nature, was certainly important, but much less (Capecchi 2017).

Many of the problems posed by mathematicians, as nature of the continuum, 
existence of vacuum, driving force, gravity and motion, were also studied by the 
professional philosophers of Nature. But they were essentially general problems posed 
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to any educated person. I mean that the metaphysical and epistemological problems 
were not exclusive domain of professional philosophers. Mathematicians, from 
classical and Hellenistic Greece, had their own ideas about many metaphysical 
problems of philosophy that were dealt with differently from the professional 
philosophers. Many mathematicians could have little philosophical knowledge as 
modern scientists do, but this notwithstanding they thought about Nature. The so-called 
Pythagoreanism, that is the attribution of a fundamental role of mathematics in the 
interpretation of the world, usually rooted in the influence of Pythagoras and Plato, is a 
constituent of Greek mathematics and precedes the two philosophers.

To get an idea of the origin of modern science, it is particularly instructive to look 
at the applied mathematics of ancient Greece, and in particular of the Hellenistic 
period. Greek mathematics was born at the same time as astronomy, harmonics, 
mechanics, optics and surveying. Only later began a process of abstraction that 
eliminated, but not completely, the sensitive basis, thus separating pure from impure 
mathematics (contaminated by the senses). Impure, or “applied”, mathematics, or 
mixed mathematics as referred to in this paper, continued to exist and were generally 
studied by the same scholars who dealt with pure mathematics. This without a sharp 
distinction of roles and status between them. Mathematicians, indeed, generally were 
not only specialists, that is they were not mathematicians in the modern sense of the 
term; many of them shared interest in natural philosophy, epistemology, technology, 
medicine. They were thus able to develop ideas about the nature of the world 
independently enough of those of “professional” philosophers and theologians. They 
went some way to build a community with shared values; they knew each other both 
diachronically and synchronically, criticizing or esteeming, but in any case commenting 
on each others’ works. This community pursued its science not only out of a love of 
knowledge, not only to know the fact and the reasoned fact as philosophers did, with 
the aim to make predictions, which only allowed the improvement of technology.

At least since Ptolemy (II century AD), astronomy and music were characterized 
by a hypothetical deductive approach, with theories that were not validated directly – 
which was impossible – but according to their observable consequences (Capecchi 
2014, 2016). Based on a preliminary examination of a phenomenon he proposed a 
mathematical theory. It was then placed in relation with the experimental data that 
could be obtained with laboratory experiments, or with accurate observation thanks to 
special instrumentation. This is particularly clear in the writings of music theory where 
Ptolemy’s epistemology was made explicit.

It is clear that a careful reading of texts with their contextualization in the period 
made manifest differences – virtually impossible to make precise – with respect to the 
modern approach. I know quite well the criticism in a modernist interpretation of the 
hypothetical deductive method, but consider that yet today it is difficult to give a 
unique definition of what a hypothetical deductive method is for a scientist.

Here is what Ptolemy wrote in his Harmonica:

The purpose of the harmonicist would be then to preserve in every way the reasoned 
hypotheses of the canon which do not in any way at all conflict with the perceptions 
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as most people interpret them, just as the purpose of the astrologer is to preserve the 
hypotheses of the heavenly movements concordant with observable paths. Even 
these hypotheses are themselves assumed from what is clear and roughly apparent, 
but with the help of reason discover detail as much accuracy as is possible (Ptolemy 
2000, pp. 7-8). 

Optics had a simpler structure based either on empirical principles verified by 
controlled experiments, or they are self-evident. Here is what Ptolemy wrote in his 
Optics:

For all cases in which scientific knowledge is sought, certain general principles are 
necessary, so that postulates that are sure and indubitable in terms either of 
empirical fact or of logical consistency may be proposed and subsequent 
demonstrations may be derived from them. We should therefore indicate that three 
particular principles are needed for the scientific study of mirrors and that, being of 
the first order of knowledge, they can be understood by themselves (Ptolemy 1996, 
p. 131). 

The situation of mechanics, prince discipline of physics at least for a long time, was 
very special. Mechanics is at the same time the farthest from mathematics and the 
nearest. It is the farthest because it refers to concepts such as weight, strength (apart 
from mass and inertia) that cannot be translated into geometrical concepts. It is the 
closest because its principles are so obvious that they can be accepted by all, as the 
principles of Euclidean geometry. To develop a general theory of mechanics, it is not 
necessary to perform experiments. In particular, the principles of statics, the law of the 
lever and the rule of the parallelogram, can be justified by referring to common sense, 
as that stating that if a stone is left free, it falls downwards.

Euclid’s and Archimedes’ mechanical texts are particularly enlightening to 
understand the mechanics theory at its beginning. The equilibrium of solids is reduced 
to the determination of the centers of gravity with Archimedes. The only (or almost) 
empirical postulate is that saying that if on a scale with equal arms two different 
weights are hung, the scale tilts toward the heavier. In the discussion on the equilibrium 
of fluids, the situation is a bit more complex; here concepts are used such as force and 
pressure, necessarily endowed with mechanical meaning.

Mixed mathematics crossed the Middle Ages with important changes but without 
altering the substance. Astronomy, optics, music and mechanics underwent a change by 
an interaction with new natural philosophy, that became strong in the XVII century, the 
abrupt development of technology and the recovery of ancient mathematics. The new 
mathematics of Renaissance – algebra – played some role too, but much remains to be 
studied about it. A factor that favored these changes was the diffusion of printing. In 
ancient Greece an author, even referring to an extant treatise, could not assume that his 
reader was acquainted with it. Thus instead of dealing only with advancement he dealt 
also with the argument of the cited treatise, by treating it in a more thorough way. This 
determined a mechanism of self-repetition, rather than of evolution. The diffusion of 
printing allowed to break this circularity.  
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Astronomy in the Middle Ages was essentially a geometrical discipline with only 
the aim to save phenomena and no claims were raised about causal explanations. First 
with Copernicus and then with Kepler, it became again a “physical” discipline, at least 
from what concerned the solar system. Optics changed from a theory of vision to a 
theory of light transmission; music moved toward acoustics, and mechanics gave raise 
to dynamics (modern term), that is a mathematical science of motion. Mechanics, that 
in the Middle Ages had become the science of weights, concentrate on the scale, 
became mechanics again in Greek meaning, as science of machines. 

 The interaction of mathematics with physics was restricted to traditional mixed 
mathematics and some other disciplines close to them, such as surveying, architecture, 
ballistics. For other disciplines, traditionally fully framed into the natural philosophy, 
mainly based on experience and experiment, such as magnetism, electricity, 
thermology, alchemy/chemistry, biology, physiology etc., the role of mathematics was 
different and the interaction slower. What was taken from mathematics was the way of 
reasoning; that is the use of clear definitions, the rejection of the use of synonymous 
and homonymous, assumptions derived from experiments and considered as true; the 
use of a deductive approach for proving propositions, even without the explicit use of 
geometry or arithmetic. For some sciences the “evolution” toward a form of mixed 
mathematics, started partially in the XVII century, lasted at least until the XIX century; 
this was the case of disciplines founded on quantitative descriptions such as for 
instance magnetism, electricity, chemistry. Other sciences, where the use of quantity 
was negligible, such as structural botany and zoology, philology, morphology, that 
could be classified as qualitative sciences, did not reach, and until today have not yet 
reached, the status of mixed mathematics. For them, the use of symbolic logic however 
allowed, and yet allows, at least in principle, an approach that has a similar deductive 
structure of that of mixed mathematics. 

A good enough idea of the evolution of (mixed) mathematics toward modern 
science can be reached considering in detail the evolution of mechanics, that often, at 
least in the past, was considered the prototype for understanding the scientific 
“revolution”. For the sake of space, reference has been made mainly to the period close to 
Galileo who was a main character in the field of mechanics at the turn of the XVII century.  

Mechanics until the XVII century was the name of the (mixed) mathematics that 
took care of the functioning of simple machines (lever, block and tackle, winch, screw, 
wedge), and their combinations thereof. In ancient times it reached a peak with Hero of 
Alexandria in the I century AD. It was a discipline strongly mathematized that had, at 
its basis, concepts of empirical character, but whose evidence or acceptance was 
immediate to the point that it was sometimes considered a purely rational discipline. 
Foundation of mechanics was the law of lever. 

There were two distinct justifications of this law: 
 
1. The Archimedean one, based on symmetry considerations and absolutely 

certain empirical statements, such as: if to a scale with equal arms are 
suspended two weights, the scale tilts on the side of the greater weight.  
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2. The one called, quite improperly, Aristotelian. It had a kinematic character; 
the equilibrium is due both to weights and their virtual motions (virtual 
work law). 

 
Hero’s Hellenistic mechanics allowed to solve all the problems of equilibrium, however 
complex, even if its application required a certain ingenuity in reducing all the 
mechanisms to the lever. The actual occurrence of equilibrium for a system established 
by the law of the lever left no room for doubt. An experimental test, besides not being 
considered necessary, even seemed inconceivable, at least within a certain limit.  

In the early modern era, with a new mature mathematics, the laws of lever and 
virtual work gave raise to more effective tools, such as for example the law of the 
parallelogram of forces; first with Leonardo da Vinci, then with Simon Stevin and 
Gilles Personne de Roberval. Mechanics, however, still remained essentially a 
geometric discipline. 

 Things changed when besides equilibrium, mathematicians set themselves the 
objective of studying the motion or, using modern terminology, they began to deal with 
dynamics. A development that was natural when one thinks as the machines as essential 
tools for moving weights. In fact, in the early XVII century the term mechanics spread 
to indicate the integrated science of statics and dynamics. 

The science of motion, since antiquity had been a fundamental and exclusive part 
of natural philosophy, especially that of Aristotle, who recognized four types of motion 
or changes, with local motion coinciding with our “vulgar” concept. There is a 
coincidence, hardly by chance, between the birth of the science of motion and the 
spread of artillery. With Niccolò Tartaglia ballistics was born, a (mixed) mathematics 
(Tartaglia 1537) which studied the motion of a heavy mass point (a bullet). But only 
with Galileo Galilei dynamics reached the full.  

It is difficult to say which elements, apart from the technological pressure, 
contributed to the development of the science of motion and the enlargement of 
mechanics, and in which measure they did it: natural philosophy, experimental activity 
and mathematics. 

 
1. The concept of impetus recovered in the XIV century Europe, suggested the 

principle of inertia on (meta)physical basis. Galileo, however, made the 
principle an empirical law. The adoption of the principle of inertia led to the 
breakdown of the (Aristotelian) dogma for which a motion was always due 
to a force and speed was proportional to the applied force. 

2. Even the other Aristotelian dogma, that of the speed of falling of heavy 
bodies proportional to their weight was abandoned. Someone, some 
mathematician – Stevin, as an example – dared to test the theory, and 
verified that it was false. Something that was probably obvious to most 
people, except philosophers. 

3. Another key contribution was the introduction by Galileo of time as a 
physical quantity. Perhaps it was not quite Galileo to have first the idea. But 
it was he who first took note of the possibility of an accurate measure of 
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time, and developed the consequences. With the introduction of actual time, 
kinematics became dynamics. One could always imagine a motion evolving 
in an abstract time. Also the ancient Greek mathematicians did it, as for 
example Archimedes in the study of spiral. But they did so within geometry. 
By introducing the measurement of time geometry became charged with 
empirical significance and became dynamics. The law of Galileo for falling 
bodies, which somehow could find a counterpart in the kinematics of the 
Calculators of the XIV century, became with Galileo a law of nature.  

4. An embryonic form of calculus allowed Galileo to pass from his law in term 
of constant increment of speed to the law of odd numbers for covered 
spaces, the only that could be tested by experiments. 
 

So far it seems that mechanics evolved as a discipline of mathematical character, with 
no reference to experiments in the modern sense, that is the use of precise 
measurements, to verify theories. Even the role of philosophy of nature seems scarcely 
relevant because the concept needed to develop a mechanical theory could be derived 
from everyday observations without the need of the “abstruse” reasoning of 
philosophers. 

The actual historical development, however, was a bit different. Galileo, differently 
from the traditional mixed mathematicians, had to intervene actively in the philosophy 
of Nature. Especially to free himself from preconceptions of natural philosophy.  

When young professor in Pisa, in the 1590s, Galileo contrasted the Aristotelian 
theses on levity and gravity. He did it as a mathematician. In particular, he made 
recourse to thought experiments using the fundamental tool of mechanics, the lever, to 
argue against the existence of absolute levity. To establish principles as the law of 
inertia and that of falling bodies, he had to make recourse to reasoning in terms of 
cause and effect, as part of an essentially mechanistic philosophy, although not 
corpularistic. He referred only to material and efficient causes and denied the 
possibility of action at distance. He had to discuss the plausibility of motion of the 
Earth, for example, trying to provide a rational reconstruction to his law of relativity 
and confronting with Aristotelian philosophers who opposed his views.  

Even the contrived experiment, carried out in laboratory, became an indispensable 
tool for the formulation of his laws, in particular those of the motion. Fundamental 
were the experiments of projection of heavy bodies moving on inclined planes that 
allowed him to choose from the two options, that of speed proportionally to the space 
of fall and that proportional to the elapsed time. Only after he had made his choice, he 
could carry on a purely “rational” exposition of the law of falling bodies. 

After Galileo mechanics evolved inside the community of mathematicians. The 
evolution was due to a reflection on the subject, rather than to recourse to new 
experiments, which however had some role. The objective was to generalize Galileo’s 
approach to cover situations more general than that of the motion of a mass point due to 
a constant gravity. Fundamental concepts were introduced, roughly corresponding to 
our force (Wallis, Newton) and energy (Huygens, Leibniz). 
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Protagonists of the evolution of the theory of mechanics, after Galileo, at the end of 
the XVII century, were Torricelli, Cavalieri, Descartes, Wallis, Huygens, Newton, 
Leibniz (and many others). Newton proposed a kind of mechanics that is still today an 
accepted model. With those of absolute time and space, transpiring from the 
background, in his mechanics fundamental concepts concerned mass and force. Neither 
was completely new however. The concept of mass could be found in a quite clear way 
in Baliani, Descartes and others, intended as quantity of matter, and distinct from 
weight, which was associated to mass both because the action of ethereal particles or 
attractive forces. The concept of force came from statics as cause of motion and 
equilibrium, in principle measured by the weight the force can rise.  

Newton’s mechanics, at least that exposed in the Principia mathematicae 
philosophia naturalis of 1687, had an axiomatic structure, based on three explicit (and 
many other implicit) principles. The three explicit principles, referred to as leges sive 
axiomata, are: 

Law I. Every body perseveres in its state of rest, or of uniform motion in a right line, 
unless it is compelled to change that state by forces impressed thereon. 

Law II. The alteration of motion is ever proportional to the motive force impressed; 
and is made in the direction of the right line in which that force is impressed. 

Law III. To every action there is always opposed an equal reaction: or the mutual 
actions of two bodies upon each other are always equal, and directed to contrary 
parts (Newton 1846, pp. 13-14). 

Thousands of pages have been written on their logical status. This, for sure, means it is 
not easy to be grasped. One main doubt is if the laws are entirely a priori or derived 
from experience. Even though this second possibility is presently dominating, the 
experience called for is not that of the contrived experiments, but rather that of the 
common man, as was for Aristotle.  

Newton attributed the first two laws to Galileo. There is historical motivation for 
this move, but for sure Newton was too generous. Especially for the second law. It 
could be considered a direct derivation of the Galilean law of motion. Indeed, if a 
constant cause (force) gives a motion with constant increase of speed – acceleration in 
modern term –, a variable cause (force) will give a motion with variable increase of 
speed; and it is not difficult to declare a proportionality between increase of velocity 
and cause (force). However, Newton’s considered generic directions and causes, 
besides a mathematical apparatus Galileo did not possess. 

Newton’s Principia were considered by contemporaries a very clever text but not a 
revolutionary one, independently if its foundation was accepted or rejected. The text 
could indeed easily be framed into the tradition of mixed mathematics originated by 
Galileo, Wallis, Huygens. Only a modern perspective, and a particular attitude of the 
historian, could see in it something of revolutionary. The appreciation toward the 
Principia was due not so much – as is the case for modern scholars – to its foundation. 
It was not the terrestrial mechanics to be appreciated, but the celestial, with the 
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proposed explanation of the planetary motion. Here experience came into play. It was 
represented by Kepler’s laws from which Newton could derive (analytic phase) the 
universal law of gravitation. This quite simple law allowed in turn to deduce with the 
rule of Calculus the planetary motion (synthetic phase) and give a scientific foundation 
to the Copernican hypothesis. 

Newton’s mechanics had its limit in the restriction to the mass point free of any 
constraints. It was however adapted in the XVIII and XIX centuries to any situation: 
extended rigid bodies, constrained and deformable bodies.

2. Conclusions 

This memoir dealt with the description of the evolution of old mathematics, actually 
mixed mathematics, in the Renaissance and Baroque era. This evolution depended on 
both external (pressure from society) and internal (development of mathematics and 
philosophy of Nature) causes. The theme dealt with in the memoir, the relation between 
science and mathematics, was the object of a tremendous amount of writings, especially 
in the 1950-1980s. Here it is proposed a quite new point of view that concentrates on 
professional mathematicians rather than on professional philosophers; assuming, 
however, that the former acted in fact as philosophers. Mathematicians – almost all of 
them having a quite good training in the philosophy of nature – were the only ones who 
could make homogeneous epistemology, natural philosophy and mathematics. This was 
not possible for professional philosophers, even when they were great mathematicians, 
as Descartes and Leibniz, that developed separately a natural philosophy and a (pure) 
mathematics.
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