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Abstract: We summarize the papers published by Einstein in the Annalen 
der Physik in the years 1902-1904 on the derivation of the properties of 
thermal equilibrium on the basis of the mechanical equations of motion and 
of the calculus of probabilities. We point out the line of thought that led 
Einstein to an especially economical foundation of the discipline, and to 
focus on fluctuations of the energy as a possible tool for establishing the 
validity of this foundation. We also sketch a comparison of Einstein’s 
approach with that of Gibbs, suggesting that although they obtained similar 
results, they had different motivations and interpreted them in very different 
ways. 
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1. Introduction 

In June 1902, having just been accepted as Technical Assistant level III at the Federal 
Patent Office in Bern, Albert Einstein submitted to Annalen der Physik a manuscript 
entitled “Kinetic Theory of Thermal Equilibrium and of the Second Law of 
Thermodynamics” (Einstein 1902). It turned out to be the first of a series of papers on 
closely related subjects, one each year (Einstein 1903, 1904), acting almost as a prelude 
to his annus mirabilis production which revolutionized physics and soundly established 
Einstein’s fame. In these papers, following the steps of Maxwell and Boltzmann, 
Einstein attempts “to derive the laws of thermal equilibrium and the second law of 
thermodynamics using only the equations of mechanics and the probability calculus”.1 

In spite of their importance, the 1902-1904 papers have received comparatively 
little attention. One of the reasons was the publication in 1902 of Gibbs’ treatise 
(1902). This book is considered, especially since the publication of the influential book 
by R.C. Tolman (1938), as the founding text of the discipline. Einstein himself 
contributed to the neglect of the 1902-1904 papers. In his scientific autobiography 
Einstein remarks in fact:  

                                                      
1 Einstein’s papers and their translations are available on the Princeton University Press site [PUP].  
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Not acquainted with the earlier investigations by Boltzmann and Gibbs, which had 
appeared earlier and actually exhausted the subject, I developed the statistical 
mechanics and molecular-kinetic theory of thermodynamics which was based on the 
former. My major aim in this was to find facts which would guarantee as much as 
possible the existence of atoms of definite size (Einstein 1949, p. 47). 

The last sentence of this quotation highlights the different attitude of Einstein with 
respect to Gibbs. Einstein aims at using the statistical approach to establish the reality 
of atoms, while Gibbs aims at a rational foundation of thermodynamics, and 
consequently focuses on the regularities which emerge in systems with many degrees of 
freedom. This is exhibited by the different attitude of the two scientists with respect to 
the equation which relates the size of energy fluctuations with the specific heat: while 
Gibbs stresses that it intimates the non-observability of such fluctuations, Einstein 
immediately looks for a case in which they could become observable. He is thus led to 
consider black-body radiation as such a case. In pursuing this line of research Einstein 
found an unexpected result, that pointed at an inconsistency between the current 
understanding of the processes of light emission and absorption and the statistical 
approach. To resolve this inconsistency, in the first paper of his annus mirabilis 
(Einstein 1905), he renounced the detailed picture of light emission and absorption 
provided by Maxwell’s equations, maintaining his statistical approach, in particular the 
statistical interpretation of entropy. He introduced therefore the concept of light quanta, 
presented as a “heuristic point of view”.  

2. The papers 

2.1. The 1902-1903 papers  

The first two papers (Einstein 1902, 1903) have a very similar structure. The second 
paper aims to widen the scope of the first, by attempting to consider “general” 
dynamical systems and irreversible processes. We shall follow the first paper, and we 
shall then briefly review the points in which the second paper differs. We adapt 
Einstein’s discussion to modern notation.  

Einstein begins by considering a general physical system as represented by a 
mechanical system with many coordinates  and the corresponding 
momenta obeying the canonical equations of motion with a time-
independent Hamiltonian that is the sum of a potential energy (function of the q’s 
alone) and of a kinetic energy that is a quadratic function of the p’s, whose coefficients 
are arbitrary functions of the q’s (and is implicitly supposed to be positive definite). 
Following Gibbs, we shall call the p’s and q’s collectively as the phase variables, and 
the space they span the phase space. Einstein then considers a very large number N of 
such systems, with the same Hamiltonian, whose energies E lie between two very close 
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values  and . He then looks for the stationary distribution of these systems in 
phase space.  

Here Einstein introduces a strong mechanical hypothesis by assuming that, apart 
from the energy, there is no other function defined on the phase space that is constant in 
time. He argues that this condition is equivalent to the requirement that the stationary 
distribution of the systems in phase space depends only on the value of the energy. He 
then shows that Liouville’s theorem implies that the local density of systems in phase 
space is constant in time and therefore, by the mentioned hypothesis, must be a function 
of the energy alone. Since the energies of all N systems are infinitely close to one 
another, this density must be uniform on the region of phase space defined by the 
corresponding value of the Hamiltonian. In this way Einstein has defined what is now 
called the microcanonical ensemble.  

To derive the canonical ensemble, Einstein considers the equilibrium between a 
system S and a system  considerably larger. By introducing a clever trick, he is able to 
show that if the energy of the total system  is fixed and equal to  the probability 
that the system S is found in a small region g of its phase space in which its energy is 
equal to E is given by 

 
 

 
where is the phase-space volume of g and  is a positive quantity 
given by  

 

 

 
where is the volume of the phase space available to the larger system  when its 
energy lies between  and  This derivation is close to one which is most 
popular nowadays, but should be contrasted with Gibbs’ approach, who introduces the 
canonical distribution axiomatically, as the simplest one which allows physically 
independent systems to be also statistically independent. 

By applying these relations to the case of a system with quadratic Hamiltonian, 
Einstein then easily derives the equipartition theorem, which allows him to interpret the 
quantity in terms of the absolute temperature:  where is a universal 
constant (that we now call Boltzmann’s constant). Having found the relation between  
and the temperature, Einstein proceeds to the derivation of the second law of 
thermodynamics, which he here limits to the statement of the integrability of heat 
divided by the absolute temperature. He considers a system with externally applied 
forces. These forces are split into ones derived from a potential depending on the 
system’s coordinates, and others that allow for heat transfer. The first ones are assumed 
to vary slowly with time, while the second ones change very rapidly. The infinitesimal 
heat is defined as the work of the second type of forces. Then a reversible 
transformation is one in which the system is led from an equilibrium state with given 
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values of  and of the volume V to one with the values  and  Here 
Einstein tacitly assumes that the time average of the relevant quantities in a slow 
transformation can be obtained by averaging the same quantity over the distribution of 
the N systems in phase space. He thus finds 

 

 

 
where  is the average total energy of the system, and F is a constant introduced so 
that the distribution  is normalized. Einstein remarks that this 
expression contains the total energy, and is independent of its splitting into kinetic and 
potential terms. One can readily integrate this expression, obtaining an explicit form of 
the entropy S:  

 

 

 
In the 1903 paper, Einstein reconsiders the problem within a more general framework 
of a dynamic system whose state is identified by a collection p of variables satisfying a 
system of first-order equations of motion, which allow for just one integral of motion. 
He even thinks that the conditions leading to Liouville’s theorem are redundant (but he 
apparently realized his error soon after its publication). More importantly, he explicitly 
identifies the probability of finding the system in a region g as the limit for infinite time 
of the time fraction spent in the region. In the course of this derivation, Einstein more 
than once states without proof that the energy of a system described by a canonical 
distribution never differs markedly from its average, before and after the several steps 
of the process. Within this approach he is able to obtain a more transparent derivation 
of the expression of entropy (by considering a system undergoing a succession of 
adiabatic and isopycnic2 infinitely slow transformations) and attempts to derive the 
non-decreasing property of the entropy in closed systems by relying on the assumption 
that “always more probable distributions will follow upon improbable ones” (Einstein 
1903). This assumption makes his derivation less than satisfactory. 

2.2. The 1904 paper 

A change of pace is easily noticed already in the first lines of the 1904 paper, entitled 
“On the general molecular theory of heat”. Here he refers to his previous papers, in 
which he had spoken of the “kinetic theory of heat” as laying the foundations of 
thermodynamics, by the less specific expression of “molecular theory of heat”. The 

                                                      
2 Following Boltzmann, Einstein calls “isopycnic” a process in which the system is allowed to exchange 
energy with a heat reservoir, while the parameters defining its Hamiltonian do not change. 
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paper contains several results worth mentioning, as announced at the end of the 
introduction: 

First, I derive an expression for the entropy of a system, which is completely 
analogous to the expression found by Boltzmann for ideal gases and assumed by 
Planck in his theory of radiation. Then I give a simple derivation of the second law. 
After that I examine the meaning of a universal constant, which plays an important 
role in the general molecular theory of heat. I conclude with an application of the 
theory to black-body radiation, which yields a most interesting relationship between 
the above-mentioned universal constant, which is determined by the magnitudes of 
the elementary quanta of matter and electricity, and the order of magnitude of the 
radiation wave-lengths, without recourse to special hypotheses (Einstein 1904).  

Our interest focuses on the last two points. Once Einstein establishes the equipartition 
theorem following pretty much his previous steps, he uses his available data to estimate 
the value of Then, under the title “General meaning of the constant ” he discusses 
the fluctuations of the energy in the canonical ensemble, deriving the relation between 
the specific heat and the amplitude of energy fluctuations as  
 

 

 
Gibbs had obtained the same expression in (Gibbs 1902, eq. (205), p. 72), but had 
almost immediately pointed out that these fluctuations were not observable. 
Characteristically, Einstein instead goes over immediately to look for a system in which 
these fluctuations could be observed and he finds that the blackbody radiation could 
provide such a system. It is worth quoting his reasoning: 

If the linear dimensions of a space filled with temperature radiation are very large in 
comparison with the wavelength corresponding to the maximum energy of the 
radiation at the temperature in question, then the mean energy fluctuation will 
obviously be very small in comparison with the mean radiation energy of that space. 
In contrast, if the radiation space is of the same order of magnitude as that 
wavelength, then the energy fluctuation will be of the same order of magnitude as 
the energy of the radiation of the radiation space (Einstein 1904).  

Einstein can thus evaluate the size of the energy fluctuations from the relation above 
and from the Stefan-Boltzmann law, and obtains an estimate of the size  of a cavity in 
which the root-mean-square of the energy fluctuation is comparable with the total 
energy. This quantity compares well with the wavelength  corresponding to the 
peak of Planck’s radiation law. His attention is thus drawn to a more detailed study of 
the black-body radiation problem. However, in the following months, trying to 
explicitly apply his theory to that system, he will encounter a paradox, which he will 
brilliantly overcome by renouncing the classical picture of the emission and absorption 
of light, based on Maxwell’s equations, and by introducing the concept of the light 
quanta (Einstein 1905).  
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The importance of this development has been stressed by Kuhn (1978, p. 171), 
when he states that  

What brought Einstein to the blackbody problem in 1904 and to Planck in 1906 was 
the coherent development of a research program begun in 1902, a program so nearly 
independent of Planck’s that it would almost certainly have led to the blackbody law 
even if Planck had never lived.  

3. Einstein vs. Gibbs 

One usually takes for granted that the research projects pursued by Einstein in these 
three papers, and by Gibbs in his book (Gibbs 1902) were equivalent, and that the more 
mathematically refined argumentation contained in the latter made Einstein’s approach 
redundant. A closer scrutiny shows however fundamental differences in their 
approaches, and makes Einstein’s approach more attractive to present-day physicists. 
Gibbs program focuses in understanding the properties of ensembles of mechanical 
systems, i.e., of systems whose dynamical equations are given, but whose initial 
conditions are only given in a probability distribution. He gives this discipline the name 
of “statistical mechanics”. He stresses that its relevance goes beyond establishing a 
foundation of thermodynamics: 

But although, as a matter of history, statistical mechanics owes its origin to 
investigations in thermodynamics, it seems eminently worthy of an independent 
development, both on account of the elegance and simplicity of its principles, and 
because it yields new results and places old truths in a new light in departments 
quite outside of thermodynamics. (Gibbs 1902, Preface, p. viii) 

On the other hand, according to Gibbs, our ignorance of the basic constitution of 
material bodies make unreliable our inferences based on supposed models of matter, 
even when derived by the methods of statistical mechanics: 

In the present state of science, it seems hardly possible to frame a dynamic theory of 
molecular action which shall embrace the phenomena of thermodynamics, of 
radiation, and of the electrical manifestations which accompany the union of atoms. 
[…] Difficulties of this kind have deterred the author from attempting to explain the 
mysteries of nature, and have forced him to be contented with the more modest aim 
of deducing some of the more obvious propositions relating to the statistical branch 
of mechanics. Here, there can be no mistake in regard to the agreement of the 
hypotheses with the facts of nature, for nothing is assumed in that respect. The only 
error into which one can fall, is the want of agreement between the premises and the 
conclusions, and this, with care, one may hope, in the main, to avoid. (Gibbs 1902, 
Preface, pp. ix-x) 

In Gibbs’ approach, the probability distribution is a datum of the problem, while in 
Einstein’s one it is one of the unknowns. The greatest difference is that Gibbs starts 
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from the equal a priori probability postulate, while for Einstein what is important is to 
evaluate time averages and these are replaced by phase space averages through an 
ergodic hypothesis. Thus Gibbs is allowed to introduce the canonical distribution a 
priori, as an especially simple one, endowed with interesting properties, in particular 
because it factorizes when one considers the collection of two or more mechanically 
independent systems (Gibbs 1902, p. 33). On the contrary, for Einstein, the canonical 
distribution is the distribution which describes the mechanical state of a system in 
contact with a thermal reservoir at a given temperature, while the “simplest” 
distribution is rather the microcanonical, which represents the state of an isolated 
system at equilibrium. And the former is derived from the latter. 

Even more strikingly, in Einstein’s hands, deviations from the expected behavior 
become a tool for the investigation of the microscopic dynamics. This difference in 
attitude was already highlighted above, in the discussion of energy fluctuations, but the 
clearest example is the 1905 paper on light emission and absorption (Einstein 1905), 
where he brackets the contemporary models of light absorption and propagation, but 
maintains the statistical interpretation of entropy. He then evaluates the radiation 
entropy from the empirical distribution law and interprets it in terms of the statistical 
approach as describing the coexistence of point-like particles in a given volume.  

4. Summary 

We presented Einstein’s approach to statistical mechanics in contrast to the one taken 
by Gibbs. The results are equivalent since both are based on Boltzmann’s contributions. 
Gibbs’ starting point is the equal a priori probability hypothesis in phase space that 
leads to the microcanonical probability density for an ensemble. Einstein, on the other 
hand, starts by stating that what is important is the evaluation of time averages of 
appropriate quantities. These can be replaced by averages of the same quantities over 
an unknown density function over the phase space, with the help of an ergodic 
hypothesis. Einstein introduces the assumption that the energy is the only conserved 
quantity to play the role of the ergodic hypothesis. Using this assumption and 
Liouville’s theorem, Einstein shows that the unknown density function mentioned 
before must be constant on the energy shell, that is it must be the microcanonical 
distribution. From there, the interpretation of the canonical distribution is different: for 
Gibbs, it is the simplest distribution, in which physically independent systems are also 
statistically independent, while for Einstein it is the distribution which describes the 
state of a system in contact with a reservoir. Thus the index of the canonical 
distribution (as defined by Gibbs) is “analogous” to the temperature for Gibbs, but can 
be “identified” with the temperature for Einstein. It is also interesting to remark that in 
several points Einstein states (without proof) that the distribution of energy values in 
the canonical ensemble is sharply peaked, and deduces from this some dubious 
inequalities for the probability density itself. Only in the 1904 paper he explicitly 
evaluates the size of fluctuations, obtaining a result already derived by Gibbs. But, 
while Gibbs had stressed the non-observability of energy fluctuations in macroscopic 



Luca Peliti, Raúl Rechtman 

 

346 

systems (thus contributing to the “rational foundation of thermodynamics”), Einstein 
points at the use of fluctuations as a tool for investigating microscopic dynamics.  

What interest can a present-day reader find in Einstein’s 1902-1904 papers? We 
think that they sketch a very neat road map for the introduction of the basic concepts of 
statistical mechanics, focusing on their heuristic value. One first focuses on isolated 
systems and identifies the microcanonical ensemble as the equilibrium distribution by 
means of the thermal equilibrium principle. For this step, Einstein’s reasoning given 
above, based on the postulate of the absence of integrals of motion beyond the energy, 
is excellent. Then, one looks at a small part of such an isolated system, and one shows 
that the corresponding distribution is the canonical one. Finally, one identifies the 
mechanical expressions of temperature, infinitesimal heat and, by integration, of 
entropy. All these steps can be tersely traced by following, more or less closely, 
Einstein’s path. At this point, the focus can be shifted to the evaluation of fluctuations, 
which allow on the one hand to recover the equivalence of ensembles for large enough 
systems and, by the same token, to identify situations in which the underlying 
molecular reality shows up in the behavior of macroscopic systems (like, e.g., in 
Brownian motion). This road map has been more or less followed by several modern 
textbooks on statistical mechanics, but we think that it would be fair to stress that it had 
first been sketched in the papers we described.  

A more detailed version of this contribution is being published on Journal of 
Statistical Physics (Peliti, Rechtman 2016). 
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