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idea of a theoretical “reference amplifier" able to provide a useful standard in practical 
comparison with real devices. He built up a general theory, relying strongly on the re-
sponse function R(t) of that amplifier (assumed to be linear). In particular he was able 
to find the basic features of an amplifier from its response to a pulse or to a sine wave 
of definite frequency. The main properties of the response function were explicitly 
worked out, starting from the key role played by the causality issue, i.e. certain rela-
tions between frequency and phase shift that a real amplifier has to satisfy in order not 
to allow output signals to appear before input ones. Finally, Feynman pointed out the 
equivalence between causality property and dispersion relations to be satisfied by the 
response function, probably inspired by similar issues in different physical contexts. 

From our analysis, once more one can see the original approach of Feynman to sci-
entific problems at work in a quite unusual field of application. 
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Abstract: It is well-known that Dirac suggested a quantization of Classical 
Mechanics by means of an analogy between classical Poisson brackets and 
commutation relations. Morchio and Strocchi suggested a rigorous deriva-
tion of this quantization by finding out, independently from Dirac’s previ-
ous works, a new algebraic structure which characterizes both kinds of Me-
chanics as two representations of this structure, distinguished by a dichoto-
mous variable Z, whose value 0 represents the case of Classical Mechanics, 
whereas the value ih/2π represents Quantum Mechanics. No longer Classi-
cal Mechanics can be considered as the limit of Quantum Mechanics for h 
→ 0; and these theories have to be considered as mutually incommensura-
ble. The nature of this incommensurability is investigated; in particular, it is 
compared with the incommensurability between two formulations of classi-
cal Mechanics, i.e. Newton’s and Lazare Carnot’s.  
 
Keywords: Quantum Mechanics, Dirac’s quantization, New algebraic struc-
ture of Quantum Mechanics, Incommensurability of two divergent Mechan-
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1. Introduction  

Dirac had an advantage with respect to most theoretical physicists; he well-knew Ham-
ilton formulation of Classical Mechanics (CM), which at his time was undervalued and 
put aside. (Jammer 1989, p. 236) It enjoys extraordinary properties. Equipped with ca-
nonical variables the Hamiltonian is independent from the system of reference. Moreo-
ver, its basic operation is the Poisson brackets (PB), through which this formulation 
translates all basic operations of calculus; e.g. the derivative of a physical magnitude k, 
the case of time included, is equal to a PB of the Hamiltonian H and this magnitude k 
with respect to the two variables of the phase space; hence all differential operations of 
Hamiltonian dynamics are represented by an algebraic structure of the PBs. In other 
terms, no other formulation of theoretical physics enjoys a strong link between physics 
and mathematics as Hamiltonian formulation through its PB algebraic structure. In ad-
dition, it is remarkable that this link concerns what is more advanced in both branches 
of science, i.e. Mechanics and Mathematics. This fact suggests to attribute to the Ham-
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iltonian a leading role in advancing theoretical physics. One should investigate why in 
the history of Theoretical physics this great theoretical advancement was undervalued 
before Dirac’s application to QM. Rightly Strocchi resumed the historical development 
of Analytical Mechanics in a new way, i.e. as addressed to both achieve and develop 
the Hamiltonian formulation. (Strocchi 2018)  

In 1925 Dirac discovered an analogy between the Poisson brackets of Classical Me-
chanics (CM) and the quantum relations of commutation. Through this analogy he sug-
gested an algebraic structure characterizing Quantum Mechanics (QM). Being his analo-
gy between QM and CM very effective in order to suggest great part of the new formal-
ism, he looked for improving it into a more substantial homeomorphism. Yet, it eventual-
ly resulted to be formally inconsistent (Darrigol 1992, Chapt. 12; Ali, Englis 2005, Sect. 1). 

After a long debate on how improving this method of quantization (Landsmann 
2005), recently two papers (Morchio, Strocchi 2008, Morchio & Strocchi 2009) – both 
summarized by a paper (Strocchi 2012), and chapter 7 of a book (Strocchi 2018) – re-
visited Dirac’s quantization by suggesting a specific algebraic structure, which gives a 
complete solution of the quantization problem in terms of a dichotomous variable Z – 
the case Z = 0 represents CM, whereas the case of an imaginary value of Z, QM – and 
moreover gives reason of the partial failure of Dirac’s quantization.  

2. Morchio and Strocchi’s algebraic structure accurately representing the problem 
of quantization 

When introducing his strategy, Strocchi underlines the relevance of the algebraic struc-
ture of the classical Hamiltonian:  

[…] the algebra of canonical variables with the (Lie) product defined by the Poisson 
bracket provides the general structure for the formulation of Hamiltonian classical 
mechanics and may be considered as its backbone. Actually, most of the general is-
sues, like time evolution, transformations of canonical variables, symmetries and 
constants of motion etc. have a simple and neat formulation in terms of such an al-
gebraic structure. Clearly, Dirac must have had in mind the power and effectiveness 
of the classical canonical structure in formulating the quantization rules in such a 
way to reproduce as closely as possible the general algebraic properties of Hamilto-
nian mechanics (canonical quantization). 

In fact, in this way, important physical quantities, like e. g. the Hamiltonian, the 
momentum and the angular momentum keep being the generators of, respectively, 
time translations, space translations and space rotations, provided that their action is 
given by commutators rather than by the Poisson brackets.  

Amazingly, as it may a posteriori appear, at a formal level the quantum revolution 
may be reduced and fully accounted for, merely by the replacement of the classical 
Poisson brackets {. , .} by commutators (Dirac canonical quantization) […] 

[qi, qj] = 0 = [pi, pj]  … [qi, pj] = ih/2π{qi,, pj} = ih/2π δij 
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where [. , .] denotes the commutator and q, p the quantum version of the classical 
canonical variables q, p. 

The issue of further understanding and justifying such a strong relation between 
classical and quantum mechanics was of great concern for Dirac.  

Dirac suggested to explain the above relation between classical and quantum me-
chanics by abstracting [what then Morchio and Strocchi recognized to be] the fol-
lowing algebraic structure as common to both classical and quantum mechanics…. 
The [only] very important property discovered by Dirac is that in a Poisson algebra1 
A the following algebraic identity (Dirac identity) holds, which establishes [Dirac 
quantization, i.e.] a link between the Lie product { , } and the commutator [A, B] ≡ A 
B — B A (defined in terms of the basic product), for any A, B ϵ A. 

Proposition 7.1.1 If A is a Poisson algebra [of real, regular functions] the follow-
ing [six] properties hold  

1) (Dirac identity) 

[A, C] {B, D} = {A, C} [B, D]; Ɐ A, B, C, D ϵ A;          (7.4) 

2) the commutator and the Lie product commute  

[A, B] {A, B} = {A, B} [A, B];             (7.5) 

3) if there exists a pair C, D, such that {C, D} is invertible, as assumed in the follow-
ing, then, 

[[C, D] ,{C, D}-1] = 0 

[[C, D] {C, D}-1, {A, B}] = 0  Ɐ A, B ϵ A;          (7.6) 

4) if also {A, B} is invertible, then 

[A. B] {A, B}-1 = [C, D]{C, D}-1 ={C, D}-1[C, D] ≡ Z,          (7.7) 

5) Z relates the commutator to the Lie product, in the sense that Ɐ E, F, G, H ϵ A 

[E, F] = Z{E, F},   [Z, {G, H}]= 0 = [Z, [G, H]].          (7.8) 

6) Z commutes with all the elements of A, i.e. it is a central variable: 

 
1 Let us recall that an algebra is a vector space over the complex numbers with an associative product which 
is linear over both factors. The Lie product of two functions is given by their PB, enjoying the properties of 
antisymmetry, linearity on both factors, Leibniz rule and Jacobi identity. The inverse of a PB is obtained by 
exchanging the derivation variables with the functions to be derived; they are called Lagrange brackets, the 
first kind of brackets introduced into theoretical physics. A Poisson algebra is a real associative algebra 
equipped with a Lie product.  
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1 Let us recall that an algebra is a vector space over the complex numbers with an associative product which 
is linear over both factors. The Lie product of two functions is given by their PB, enjoying the properties of 
antisymmetry, linearity on both factors, Leibniz rule and Jacobi identity. The inverse of a PB is obtained by 
exchanging the derivation variables with the functions to be derived; they are called Lagrange brackets, the 
first kind of brackets introduced into theoretical physics. A Poisson algebra is a real associative algebra 
equipped with a Lie product.  
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[Z, A] = 0   Ɐ A ϵ A.     (7.9) 

[… ] Actually, eq.s (7.8) and (7.9) do not hold for general Poisson algebras. In par-
ticular, the existence of pairs C, D such that {C, D} is invertible fails if the Poisson 
algebra is generated by Cꝏ functions of compact support (Strocchi 2018, pp. 93-97). 

Moreover, the corresponding algebraic relation between classical and quantum canoni-
cal variables results incompatible with some valid rules (e.g. linearity). The long time 
research on this subject led to a “quagmire” of contradictions among the several re-
quirements for satisfying a suitable quantization (Ali, Englis 2005, p. 397). 

In conclusion Dirac argument for explaining the deep relation between classical and 
quantum mechanics at the level of the canonical structure is mathematically incon-
sistent and the Lie algebraic structure of the quantum variables cannot be defined 
[according to Dirac’s suggestion] (Strocchi 2018, p. 98).  

3. Morchio and Strocchi’s new algebraic structure for both kinds of Mechanics 

After having put the problem, Morchio and Strocchi illustrate the basic point of their 
solution.   

Our results suggest a quite different approach to the relation between classical and 
quantum mechanics with respect to phase space quantization: the classical phase 
space is not assumed [emphasis added] as a starting point [as Dirac did it] and rather 
arises [as obtained from the positions qi only] from the same (non commutative) 
Poisson algebra [defined by the Proposition 7.1.1 in the above], in correspondence 
with one of the values taken by the variable Z, on the same footing as the quantum 
mechanical phase space (Morchio, Strocchi 2009, p. 38). 

The momenta pi are generated by the derivative operator of the positions qi; inside 
Hamiltonian mechanics it corresponds to a PB. Then their free polynomial associative 
(real) algebra is generated. This algebra, together with the same kind of algebra of the 
positions qi constitutes the algebra AA of these coordinates. This point is very important; 
here the classical coordinates phase space is a result, whereas the algebraic relations of 
PBs is basic; hence, the algebra is put first, then comes the functions space.  

Then the Lie product is defined in such a way to assure – through the Rinehart def-
inition of its extension to vector fields – the functional correspondence between the al-
gebra AA and the vector space Vect(M) [the module structure of the Lie algebra of vec-
tor fields of compact support] to the Vect(M). Eventually, a Poisson-Rinehart algebra is 
thus defined as the framework of the theory.   

In such an algebra Proposition 7.1.1 is proved to be true by (Strocchi 2018, pp. 96-
97). Therefore, a central variable Z is obtained from the algebraic relations between 
commutators and PBs.  
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In particular, the above construction shows that the Dirac ansatz of canonical quan-
tization, in the form of the proportionality of the commutators of variables in 
Cꝏ(M)+ Vect(M) to their classical Poisson brackets, has no alternative, within the 
above rather general notion of mechanical system.  

[CM] arises from the same (non-commutative) Poisson algebra in correspondence 
with one of the values taken by the central variable Z, on the same footing as the 
quantum mechanical state space. We also emphasize that in the above approach the 
Planck constant needs not to be introduced. It automatically appears as a variable 
invariant under all physical transformations, i.e. a universal constant, in the Pois-
son—Rinehart algebra of a manifold (Morchio, Strocchi 2009, p. 38). 

Strocchi concludes: 

The intrinsic geometry of the algebraic structure of AA, namely the existence of the 
translations in the space of coordinates, replaces the somewhat ad hoc assumption 
[suggested] by Dirac… on the basis of a claimed classical analogy. No such a classi-
cal analogy may be invoked for relating classical and quantum mechanics; the only 
relation is that they correspond to inequivalent realizations of the Poisson algebra A 
defined above, which consists of free polynomials2 of the coordinates qi and the 
generators of translations qi. 

The inequivalence of the two realizations precludes the existence of a mapping be-
tween them (as for inequivalent realizations of a Lie algebra) and explains the ob-
structions for Dirac strategy (Stocchi 2017, p.100). 

The above results constitute an independent approach to the quantization; it is at all in-
dependent of its historical origin in Dirac’s analogy.  

4. The mutual incommensurability of CM and QM 

In my opinion, this result cannot be underestimated for several reasons. First, we have 
the same mathematical formalism for both CM and QM, differing only in the value of a 
discrete parameter. No other pair of physical theories enjoys such a property within the 
almost four centuries long historical development of theoretical physics, i.e. within the 
most advanced field of theoretical science.  

Second, this formal convergence in describing two very different realms – the mac-
roscopic one and the microscopic one – means that this algebraic structure represents a 
fundamental structure of our representation of the world. No philosopher of science is 
allowed to ignore this advancement.  

Third, the variable Z is dichotomous. Hence, the traditional considerations on the 
translation of QM in CM by means of a limit operation for h → 0 are of a merely intui-
tive nature (as all the limit operations on physical situations which are not entirely 

 
2  In a first approximation, the adjective “free” may be here intended as “generic”.  
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translated into mathematical terms); h→0 recovers commutativity, but for instance the 
canonical structure is lost (Strocchi 2012, p. 10). Notice that in the past some authors 
questioned such a limit, yet without giving indisputable evidence for proving its inaccu-
racy (Bokulich 2010).  

Fourth, Morchio and Strocchi’s algebra is the first mathematical structure which 
accurately distinguishes two distinct physical theories, CM and QM, as two inequiva-
lent representations of this algebraic structure. No stronger evidence is possible for 
concluding that the two physical theories are mutually incommensurable (by taking the 
last word in an intuitive sense3). Notice that two theories manifest their incommensura-
bility through radical variations in meaning of their common notions. In the history of 
theoretical physics, the notions shared by physicists no more changed than by the intro-
duction of quantum notions; it is enough to recall the quantum notion of wave-particle 
with respect to the distinct meanings of the two classical notions of either wave or par-
ticle (Dirac’s book begins just by underlining this point; Dirac 1930, Chapt. 1, Sect. 1). 
In addition, Morchio and Strocchi’s algebra gives the first instance of a pair of incom-
mensurable theories whose incommensurability is expressed in mathematical terms. 
This case ends the long-time debate whether this philosophical notion has only specula-
tive import or rather has a relevant role inside the foundations of science (Oberheim, 
Hoyningen-Huene 2018).     

Fifth, the variable Z is of a dichotomous nature, as the basic dichotomies of the 
foundations of science (Drago 1988; Drago 2017); however, the former one is a numeri-
cal variable and the latter ones range on theories (respectively, the kinds of mathematics 
and the kinds of logic). I suggest that the variable Z corresponds to the dichotomy prob-
lematic organization/axiomatic organization (PO/AO) for the following reason. Let us 
recall that the introduction of imaginary numbers into the field of real numbers applies 
the philosophy pertaining to a PO theory. The imaginary numbers represent a non-
standard model of the system of real numbers; this model is built as a hypothesis on the 
system at issue which makes use of only real numbers; this hypothesis is elaborated in 
order to eventually obtain a concrete result in real numbers, to be then compared with the 
given system. As an instance of this philosophy as applied inside a mathematical theory 
is Lobachevsky non-standard model of Euclidean geometry of the usual model of Euclid-
ean geometry. He obtained it by just replacing inside spherical trigonometry the angle α 
by the correspondent imaginary angle iα. He called his new model exactly “imaginary 
geometry”. Also in theoretical physics the ordinary QM introduces imaginary numbers 
(for representing the amplitude of probability) according to the same philosophy, being 
the result of this introduction real numbers to be compared with the real numbers ob-
tained from measurements. In conclusion, owing to this philosophy, the imaginary num-
bers always introduce a PO into both mathematical and physical theories.  

Sixth, the case of Z = ih/2π denotes the algebraic structure of respectively the Hamil-
tonian QM, which has to be considered a PO theory owing to the imaginary numbers, and 
the case Z = 0 the Hamiltonian CM, which is an AO theory; equivalently, the latter me-

 
3 The most celebrated pairs of theories are, on one hand, CM and, on the other hand, one of either QM or 
special Relativity. 
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chanics is governed by classical logic, whereas the former one by intuitionist logic. This 
alternative on the kinds of logic agrees with a previous result, i.e. QM makes essential 
use of intuitionist logic (Drago, Venezia 2002).4 This result is at odd with common stud-
ies in quantum logic because, in order to not deny classical logic as governing the entire 
theoretical physics, the scholars assume a local viewpoint (Jammer 1974, sect. 8.1). In-
stead, according to my viewpoint all the physical theories, both classical and non-
classical, are severed by the choice on the kind of logic and QM chooses the same intui-
tionist logic (governing a PO formulation) which a lot of theories already chose: Lazare 
Carnot’s mechanics, Sadi Carnot’ thermodynamics, Einstein’s special relativity, Ein-
stein’s 1905 paper on quanta and, last but not least, Dirac’s book.   

Seventh, the most accurate definition of incommensurability is the structural one, 
which is given by a difference between the two pairs of theories in comparison.5 Within 
the history of classical physics the most relevant incommensurability case is represent-
ed by the two following formulations of mechanics: Newton’s one, whose basic choices 
are AI&AO, and Lazare Carnot’s mechanics, whose basic choices are PI&PO.6 The 
logic of the former one is classical, whereas the logic of the latter is intuitionist (this 
theory looks for the in-variants of the collisions). Moreover, their theoretical develop-
ment are at odd. Whereas the first step of the former is statics and then comes dynam-
ics, the first step of the latter is dynamics and then, at the equilibrium, comes statics. 
The same occurs in the above cases of the Hamiltonian; the first step of classical Ham-
iltonian is to state the set of all trajectories as summarized by its two characteristics, the 
first order differential equations, whereas the first step of quantum Hamiltonian is to 
state the dynamics determined by the relations of commutations.   

Eighth. Whereas Newton’s formulation makes an essential use of calculus, L. Car-
not’s formulation makes use of no more than algebraic-trigonometric mathematics 
(Drago 2004). Actually, for a long time the latter formulation was the only formulation 
of Mechanics making use of an algebraic formalism (and probably also for this reason 
it was depreciated for a long time). 140 years passed before Dirac, through his analogy, 
re-introduced a modern algebraic formalism inside a formulation of Mechanics, and 
210 years passed before Morchio and Strocchi improved this analogy into an accurate 
formalism which eventually was put as the very foundations of the dynamics of the two 
formulations of Mechanics, mainly of QM.  

Ninth. Their incommensurability may also be represented by the radical variation 
of a physical model, the ideal model of bodies collision; either perfectly hard bodies 
whose shapes are invariant and hence the total energy is not conserved; or perfectly 
elastic bodies, which behave as springs and hence their total energy is conserved. This 
difference is dichotomous in the conservation of total energy, ∆Etot being zero in the 

 
4 This result is corroborated by an analysis of Dirac’ book, which as a fact illustrates QM through an essential 
use of doubly negated propositions of intuitionist logic.  
5 Several pairs of physical theories are mutually incommensurable; in the historical development of 
theoretical physics the first pair of such theories was Descartes’ optics and Newton’s optics (Drago, Guerriera 
1986), the most important pair of classical physics was Newton’s mechanics and Lazare Carnot’s mechanics 
(Drago 1988) (and also Sadi Carnot’s thermodynamics; Drago Pisano 2000).   
6 AI: Mathematics with actual infinity; PI: Mathematics with potential infinity.  
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translated into mathematical terms); h→0 recovers commutativity, but for instance the 
canonical structure is lost (Strocchi 2012, p. 10). Notice that in the past some authors 
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foundations of science (Drago 1988; Drago 2017); however, the former one is a numeri-
cal variable and the latter ones range on theories (respectively, the kinds of mathematics 
and the kinds of logic). I suggest that the variable Z corresponds to the dichotomy prob-
lematic organization/axiomatic organization (PO/AO) for the following reason. Let us 
recall that the introduction of imaginary numbers into the field of real numbers applies 
the philosophy pertaining to a PO theory. The imaginary numbers represent a non-
standard model of the system of real numbers; this model is built as a hypothesis on the 
system at issue which makes use of only real numbers; this hypothesis is elaborated in 
order to eventually obtain a concrete result in real numbers, to be then compared with the 
given system. As an instance of this philosophy as applied inside a mathematical theory 
is Lobachevsky non-standard model of Euclidean geometry of the usual model of Euclid-
ean geometry. He obtained it by just replacing inside spherical trigonometry the angle α 
by the correspondent imaginary angle iα. He called his new model exactly “imaginary 
geometry”. Also in theoretical physics the ordinary QM introduces imaginary numbers 
(for representing the amplitude of probability) according to the same philosophy, being 
the result of this introduction real numbers to be compared with the real numbers ob-
tained from measurements. In conclusion, owing to this philosophy, the imaginary num-
bers always introduce a PO into both mathematical and physical theories.  

Sixth, the case of Z = ih/2π denotes the algebraic structure of respectively the Hamil-
tonian QM, which has to be considered a PO theory owing to the imaginary numbers, and 
the case Z = 0 the Hamiltonian CM, which is an AO theory; equivalently, the latter me-

 
3 The most celebrated pairs of theories are, on one hand, CM and, on the other hand, one of either QM or 
special Relativity. 
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(Drago 2004). Actually, for a long time the latter formulation was the only formulation 
of Mechanics making use of an algebraic formalism (and probably also for this reason 
it was depreciated for a long time). 140 years passed before Dirac, through his analogy, 
re-introduced a modern algebraic formalism inside a formulation of Mechanics, and 
210 years passed before Morchio and Strocchi improved this analogy into an accurate 
formalism which eventually was put as the very foundations of the dynamics of the two 
formulations of Mechanics, mainly of QM.  

Ninth. Their incommensurability may also be represented by the radical variation 
of a physical model, the ideal model of bodies collision; either perfectly hard bodies 
whose shapes are invariant and hence the total energy is not conserved; or perfectly 
elastic bodies, which behave as springs and hence their total energy is conserved. This 
difference is dichotomous in the conservation of total energy, ∆Etot being zero in the 

 
4 This result is corroborated by an analysis of Dirac’ book, which as a fact illustrates QM through an essential 
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latter case or not in the former case. This dichotomous formula is more complex than 
that of the above parameter Z, distinguishing CM from QM; however, it is very near.  

Tenth, already some scholars (Kronz, Lepher 2012) intuitively recognized a con-
trast between von Neumann’s approach to QM and Dirac’s approach, contrast which 
persisted within subsequent theoretical results, i.e. the contrast between Wightman’s 
Axiomatic Quantum Field Theory and the Algebraic Field Theory. By qualifying in 
mathematical terms Dirac’s approach, Strocchi and Morchio’s result makes mathemati-
cally accurate the former contrast. This result allows to qualify in mathematical terms 
also the contrast within the theoretical development after QM.  

Some problems are left open: 1) To specify the AO in the Hamilton classical for-
mulation of mechanics, built by means of the algebraic structure of PB. 2) To formally 
derive from Morchio and Strocchi’s algebra of QM a lattice which of course represents 
a non-classical logic, which ought to be the intuitionist logic. 3) To find out the coun-
ter-part of this algebra in constructive mathematics.  
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