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Abstract: Symmetry is for physics what is understood as conservation laws. 
It is natural for physicists today to derive laws of nature and prove their 
validity by means of laws of invariance or conservation instead of deriving 
these laws from those we believe are the laws of nature. This turn represents 
the first turning point in the application and use of the notion of symmetry 
in twentieth-century physics as a metalinguistic term. Thus, the magnitudes 
are automorphisms, ensuring the invariance or conservation of laws in any 
reference system, showing symmetry as a metalinguistic term. In this 
article, we postulate the explicit use of symmetry as a principle, studying 
this notion as a metalanguage term in relativistic physics, assuming that, 
under certain transformations, the aspects that characterize phenomena, 
systems or laws are unchangeable, thus being independent from any 
particular observation (principles of symmetry). 
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1. Introduction 

Symmetry is a fundamental notion in physics, showing different meanings: a) 
Heuristically, it models the search for satisfactory solutions to different problems under a 
series of statements (for example, the qualitative descriptions of the ancient world 
warranted equilibrium and harmony observed in the world) and b) Methodologically at 
present, the theories are studied as structures. The reasons are: 1) The evidence provided 
by the history of science, 2) The terms acquire their meaning from the theory, and 3) The 
progress of the theories is more efficient if it contains within them prescriptions on what 
to do for the advance. From the methodological meaning, in the seminal paper (Mainzer 
1990) the notion of symmetry presents an important ontological and epistemological 
question: the problem of whether symmetrical structures are human inventions or a 
structure of real principles that organizes and determines the world (some believe in an 
ontological reality of symmetrical structures independent of human models and ideas). 
From a methodological point of view, currently the ontological question of symmetry is 
discussed. However, despite the dilemma, we show that a description of nature in terms 
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of symmetric structures and symmetry breaks seems to be the appropriate way to describe 
the diversity and complexity of reality. 

Under this perspective, for Krauss (2007, p. 188) symmetry is a notion in current 
physics that embraces conservation laws. It is natural for physicists to derive laws of 
nature and prove their validity by means of laws of invariance or conservation, instead 
of deriving these laws from what we believe are the laws of nature. In this sense 
Kastrup (1987), argued that Einstein pointed out this inverted approach when he 
postulated the universality of the space-time continuous as a consequence of Noether’s 
theorems, which represented the first turning point in the explicit use of the notion of 
symmetry to twentieth-century physicists. Under the previous perspective, through the 
algebraic language used in physical theories, we postulate symmetry as a metalanguage 
term revealing the explicit use of the notion as a principle in relativistic physics. Weyl 
(1958) argued that, the magnitudes are automorphisms, which ensure the invariance or 
conservation of laws in any reference system, which show symmetry as a metalinguistic 
term. In this research, we explore the explicit use of symmetry as a principle, in terms 
of Roche (1987), under the study of the notion as a metalanguage term in relativistic 
physics, assuming that under certain transformations the aspects that characterize 
phenomena, systems or laws are unchangeable, thus being independent from any 
particular observation (principle of symmetry). 

Krauss (2007) postulates the use of symmetry as a principle in contemporary 
physics that refers to conservation laws to validate the physical laws. Under this 
consideration, and taking into account, the use of the notion of symmetry as a principle 
in Noether’s theorems: each symmetry within a physical system implies the 
conservation of some physical properties of the system at the same time that each 
conserved quantity corresponds to symmetry. In other words, the isometry of space 
accounts the linear conservation of momentum while the isometry of time accounts the 
conservation of energy. In the book (La noción de Simetría en Física. Una 
reconstrucción, 2008, pp. 107-108), we postulate that, the use of symmetry as a 
principle is the principle of relativity ensuring the invariance or conservation of 
physical laws at group of Lorentz and Poincaré transformations, while in general 
relativity the use of symmetry as a principle through the principle of general covariance. 
The validation of physical laws through the principle of invariance or conservation 
makes it possible to identify the explicit use of the notion of symmetry as a principle in 
relativistic physics. Now, physical theories include algebraic language. In algebraic 
terms, Weyl (1958) argued that spatio-temporal symmetry refers to aspects of space-
time that exhibit a form of symmetry that complies with the properties of time and 
spatial translation, spatial rotation, Poincaré transformations and inversion 
transformations. Finally, we argue that symmetry connects empirical reality and 
mathematical structure through the language. The portentous mathematical apparatus 
requires understanding symmetry as a numerical function supporting the description of 
the world through the invariance of conservation laws under empirical transformations 
that are described in mathematical terms. 
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2. Invariance and Simultaneity 

Kant (1928, p. 206) argues that things are simultaneous when the perception of subject A 
can follow the perception of subject B and vice versa. We can perceive first the moon and 
then the earth, or inversely, first the earth and then the moon. These successive 
perceptions are possible because the earth and the moon exist simultaneously. This 
reversibility in the order of perceptions is not possible in those successive phenomena. 
Thus, reversibility in the order of perceptions constitutes a subjective criterion, but this 
does not mean that simultaneity is derived from succession, since it is the temporal 
relationship (reversible or not) that we assign a priori what determines the subjective 
criterion of this temporal relationship. Simultaneity is defined by Kant (1928, p. 208) as 
“the existence of the multiple in the same time”. This means that simultaneity does not 
have the same conception of time for Kant, in other words, it is not a pure intuition. Weyl 
(1958, p. 131) argued: 

Again, has the statement that two events occur at the same time (but in different 
places, here and in Syria for example) objective meaning? Until Einstein people said 
yes. The basis of this conviction is obviously people’s habit of considering an event 
as happening at the moment when they observe it. But the foundation of this belief 
was long ago shattered by Olaf Roemer’s discovery that light propagates not 
instantaneously but with finite velocity. Thus, one came to realize that in the four-
dimensional continuum of space-time only the coincidence of two world points, 
“here-now”, or their immediate vicinity has a directly verifiable meaning. But 
whether a stratification of this four-dimensional continuum in three-dimensional 
layers of simultaneity and a cross-fibration of one-dimensional fibers, the world-
lines of points resting in space, describe objective features of the world’s structure 
became doubtful. 

From Weyl’s statements, we can understand that simultaneity takes place when two 
events occur at the same point or very closely and at the same time. In other words, the 
time interval between two events or the distance between two points must be relative to 
the observer. Of course, the ideas of Weyl do not go in the same direction of the Kantian 
arguments. In terms of Weyl’s relational character of simultaneity, two points very close 
to each other within a referential system (“here-now”) evokes the space-time continuum, 
since spatial positions do not suffice for simultaneity: temporal simultaneity is required 
also. Two events will be simultaneous if they are relationally in the same (or very close) 
spatial and temporal point. Now, when are they not simultaneous? If we consider two 
different events in different positions, even if they are close to each other, one observer in 
each place, both within the same space-time, they are not necessarily witnessing the same 
event at the same time. So, how can we decide which description corresponds to reality? 
The relational perspective of Kant affirms that not all the observers will measure the 
same interval of time between two events or the same length for the same object, if they 
are not under an adequate relationship, in terms of Weyl in that “here-now”. What 
happens with our theories? Should they be adapted to each particular reference system? 

This relative character of simultaneity, observed by Kant and clarified in Weyl’s 
ideas, demands, in physical terms, the descriptions made by different observers leave the 
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laws of physics invariant. Thus, though two events are not simultaneous, or our observers 
do not perceive them at the same moment, their descriptions do not affect the validity or 
solidity of our theories or physical laws. In Physics is required that the measurements by 
the observers leave the theories or physical laws invariant in a determined group of 
transformations. In this way Castillo (2018, p. 73), independently that the events are 
simultaneous or not, the invariance is a fundamental property of the mathematical 
structures supporting the solidity of our physical laws. I emphasize, although each 
observer is in a different reference system and each one argues different descriptions or 
measurements, the physical laws or our theories remain invariant or unaltered. This 
requirement of invariance of physical laws in different systems of reference, argues that 
those descriptions, offered by two observers located at different points of space, should 
remain unchanged if they are invariant in terms of mathematical structures. Maintaining 
the structure of science requires laws or descriptions of the world to remain invariant and 
independent of the observer or reference system. Under these perspectives, Mainzer 
(1990, p. 319) argued that the notion of symmetry (understood in terms of invariance, 
conservation, equilibrium) evolves within current physics through mathematical language 
as automorphisms. The invariance of the laws of physics, in any inertial system, shows 
symmetry. Likewise, the invariance is a fundamental property in mathematical structures. 
The physical laws have been described through the mathematical structures, and the 
invariance of these structures refers to the permanence of the laws in each inertial system 
in a group of transformations. 

3. The language of symmetry 

Mainzer (1990, p. 319) argued that currently in physics, symmetry is understood 
explicitly as an automorphisms so, a transformation that preserves the structure of space. 
The automorphisms transform one figure into another by making them in Leibniz’s terms, 
indiscernible, if considered separately. The term automorphisms is due to Leibniz, he 
argued that relations within space represent different transformations that leave the 
structure invariant (automorphisms). Weyl (1958, p. 46) argued “(1) Every figure is 
similar to itself; (2) if a figure F' is similar to F, then F is similar to F', and (3) if F is 
similar to F' and F' to F'' then F is similar to F”. Mathematicians have adopted the word 
group to describe this situation, and so they say that automorphisms form groups”. 

Under these ideas, an automorphism or auto-mapping of figures leaves the structure 
invariant; likewise, automorphisms that fulfill these three conditions comprise in turn a 
group of transformations, which is plausible since they are a particular case of 
transformations. Thus, the reflection on a plane will be a transformation associated with 
bilateral symmetry. For example, in a balance in equilibrium, the exchange between any 
of its parts does not make the transformation distinguishable; this indistinction is known 
as reflection. Moreover, this transformation is an automorphism. In this way, iterating the 
identity (I) we will have an automorphism, since the identity (I) is an automorphism that 
applies each point p on itself. Let us expand a little this idea of identity as 
automorphisms. Weyl (1958, p. 45) exposes: 
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Two applications S and T can be made one after the other: if S applies the dot p at 
p', and T the p' at p'' then the resulting application that we will call ST applies p at 
p''. An application S can have an inverse S' such that SS' = I and in turn S'S = I; in 
other words if S transports the arbitrary point p on p' then S' applies p' on p and the 
same condition must be satisfied if first S' and then S is carried out. 

From the above, identity I is a transformation and will contain its own inverse. Unlike 
identity, two applications any ST does not have to be equal to TS, i.e. it does not have to 
be commutative. Therefore, automorphisms are particular transformations, although 
every automorphism is a transformation, not every transformation is an automorphism. In 
this sense, automorphism is a transformation that preserves the structure of space, so 
reflection on one plane is a basic operation of bilateral symmetry: from its iteration SS´ 
results identity (I), in other words it is its own inverse. Then this transformation 
(reflection) shows bilateral symmetry. Then, it´s possible to affirm that the group of 
transformations have automorphisms as subgroup, and these will contain a subgroup, the 
group of the congruences. The congruences can be understood as automorphisms that do 
not modify the dimensions of a body. The congruences in plane are the reflections and 
translations, referring to the bilateral symmetry, while the congruences in space as 
rotations, will respond to the spherical symmetry. Weyl (1958, p. 47) argued that the 
application of symmetry groups has been widely accepted in science, as it provides a 
language that explicitly describes symmetry in physical theories by showing the 
invariance of laws. Thus, in a reference system not only the points in space are 
represented numerically, also the physical magnitudes. Thus, the transformations between 
admissible reference systems leave the physical laws invariant, forming the group of 
physical automorphisms. We can understand physical automorphisms as congruent 
applications that, unlike geometric automorphisms, consider physical events in space and 
time. 

Weyl (1958, p. 110) exposes: “(…) the world extends not as a three-dimensional 
continuum but as a four-dimensional continuum. The first to correctly describe the 
symmetry, relativity or homogeneity of this tetradimensional medium was Einstein”. 
From the above, the structure of the physical world is revealed in general laws of nature; 
these laws are formulated through the magnitudes that, being functions of space and time, 
leave these laws invariant. These space-time functions are the physical automorphisms. In 
the case of simultaneity, the descriptions of both observers are within inertial systems, 
these descriptions or laws remain invariant because the systems are subjected to 
translations that exhibit symmetrical properties. The physical space-time (magnitude) or 
automorphism functions maintain the invariance in the physical laws. 

4. Symmetry and its relation to conservation laws: Lorentz transformations and 
Noether’s theorems 

Honh and Goldstein (2008, p. 233) argued that A. Legendre established the term bilateral 
symmetry through geometric considerations rotating a figure many times until it is left in 
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the same position, so it is not possible to know if the figure has been rotated or not. 
Similarly, it happens with reflections, dilations and translation movements. Such 
operations do not allow us to distinguish if such a figure was transformed. Therefore, this 
operations or transformations make indistinguishable the figure, not being able to assure 
that something has been applied to the figure. In the algebraic considerations, we can 
apply the same transformations to equations. Equations, have symmetrical properties 
(reflection, translation, dilation, etc.). The equations with these symmetric properties 
belong to the Galileo Group. The Galileo transformations (dilations, rotations and 
translations) are also contemplated by Newton. Hence, Newton’s transformations are 
subordinated to those of Galileo. 

The difference between the group of Lorentz transformations and the group of 
Galileo transformations lies in the fact that the former offers a transformation equation 
for time (taking into account the relative character of simultaneity) and consider the 
constancy of the speed of light. In this way, the Lorentz group leaves the spatio-temporal 
functions invariant, giving an account of the invariance of laws. Under this perspective, 
we can affirm that time is an automorphism because it is indistinguishable or 
indiscernible in a transformation. Time does not distinguish between past, present or 
future. For the magnitudes, it is indistinct left or right, up or down, today or tomorrow. 
Krauss (2007, p. 190) argued “a physical magnitude is a physical automorphism”. In 
addition, the group of automorphisms contains as a subgroup the set of congruences, so 
physical automorphisms are defined as congruences, as we have said, the invariance of 
the laws against a transformation, in this case the Lorentz transformations. Then the 
physical automorphisms go on to account for the invariance in terms of the equilibrium 
(equilibrium in Greek sense, or qualitative). 

Krauss (2007, p. 187) argued: “the symmetries of nature are responsible for guiding 
physicists in two important aspects: they limit the flow of possibilities and determine the 
appropriate way to describe the remaining ones”. In the search for the description of the 
world, in science prevails the simplicity, preservation of equilibrium and invariance of 
any change (physical automorphism), in other words, symmetry. Any descriptive 
possibilities, which do not respond to these aspects, are reject in science. Then, through 
the invariance of physical laws with the consideration of physical automorphisms, the 
symmetry in nature is shown. In 1933, Emmy Noether analyzed this through her 
theorems. Krauss (2007, p. 190) affirms, that the physical automorphisms are expressed 
in laws and the laws contemplate equations that govern the behavior of a given system. A 
physical quantity that remains conserved or indiscernible – without preference to any 
spatial or temporal direction – and at the same time invariant in a transformation –
physical automorphism – is expressed in physics as a conservation law. From this point 
of view, in physics when we talk about symmetry, we mean the conservation laws. In this 
way, a physical quantity indiscernible in terms of past and future, without preference in 
temporal directions and invariant in a transformation, is a physical magnitude conserved 
in time. In other words, the symmetrical properties of a physical system are intimately 
related to the conservation laws that characterize the system. 

Krauss (2007, p. 192) affirms that Noether’s theorem states that each symmetry of a 
physical system implies some physical property of the system is conserved. Each 
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conserved quantity has a corresponding symmetry. Noether states this physical quantity is 
the energy independent of temporal directions. In this sense, Noether relates the physical 
magnitude of energy, through a conservation law, in other words: the isometry of time 
corresponds energy conservation. From these ideas of Krauss (2007, p.192), the energy is 
a conserved quantity as a consequence of symmetry in time ‒ as Noether’s theorem 
affirms ‒ and in an analogous way the quantity conserved as a consequence of the 
symmetry of space will be momentum or inertia, that is: the isometry of space 
corresponds conservation of momentum. The conservation of momentum is the principle 
behind Newton’s observation the objects will continue to move uniformly and those at 
rest remain in that state, unless an external force acts on them. 

In the book La noción de Simetría en Física. Una reconstrucción (2008), we 
postulate: if two states are equivalent, the symmetry is shown through an invariant 
quantity (magnitude). For example, in the principle of inertia, the velocity (magnitude) is 
constant for rest and a uniform rectilinear motion. The indistinction between rest and 
uniform rectilinear motion for a local observer (review the classic Newton-Leibniz 
controversy across Samuel Clarke) show the symmetry of space. In other words, the 
speed as space-time magnitude is constant (physical automorphism) in a system at rest or 
in a uniform rectilinear motion (Galileo transformations) showing the symmetry of space. 

5. Considerations 

Finally, any symmetry in a physical system has its corresponding conservation law (and 
vice versa), constituting in this way an explanation of why there are laws of 
conservation and physical magnitudes (physical automorphisms) that do not change 
throughout the temporal evolution of a physical system. This argument is based in two 
basic ideas: (1) The invariance of the physical law with respect to any (generalized) 
transformation preserves the coordinate system (spatial and temporal aspects), (2) The 
conservation of a physical magnitude. In this way, the formal statement of Noether’s 
theorems derives an expression for physical quantities conservation. Thus, (1) The 
invariance of physical systems with respect to translation movement is related with the 
law of conservation of momentum and (2) Invariance with respect to time is related 
with the law of conservation of energy. The result of Noether’s work is far-reaching in 
any physical theory. It reduces everything to analyzing the various transformations that 
would make the form of the laws involved invariant. This important deduction, a 
consequence of the relativistic theory of Einstein, constitutes the turn in contemporary 
physics in relation to the consideration of the notion of symmetry as a principle. 
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the same position, so it is not possible to know if the figure has been rotated or not. 
Similarly, it happens with reflections, dilations and translation movements. Such 
operations do not allow us to distinguish if such a figure was transformed. Therefore, this 
operations or transformations make indistinguishable the figure, not being able to assure 
that something has been applied to the figure. In the algebraic considerations, we can 
apply the same transformations to equations. Equations, have symmetrical properties 
(reflection, translation, dilation, etc.). The equations with these symmetric properties 
belong to the Galileo Group. The Galileo transformations (dilations, rotations and 
translations) are also contemplated by Newton. Hence, Newton’s transformations are 
subordinated to those of Galileo. 

The difference between the group of Lorentz transformations and the group of 
Galileo transformations lies in the fact that the former offers a transformation equation 
for time (taking into account the relative character of simultaneity) and consider the 
constancy of the speed of light. In this way, the Lorentz group leaves the spatio-temporal 
functions invariant, giving an account of the invariance of laws. Under this perspective, 
we can affirm that time is an automorphism because it is indistinguishable or 
indiscernible in a transformation. Time does not distinguish between past, present or 
future. For the magnitudes, it is indistinct left or right, up or down, today or tomorrow. 
Krauss (2007, p. 190) argued “a physical magnitude is a physical automorphism”. In 
addition, the group of automorphisms contains as a subgroup the set of congruences, so 
physical automorphisms are defined as congruences, as we have said, the invariance of 
the laws against a transformation, in this case the Lorentz transformations. Then the 
physical automorphisms go on to account for the invariance in terms of the equilibrium 
(equilibrium in Greek sense, or qualitative). 

Krauss (2007, p. 187) argued: “the symmetries of nature are responsible for guiding 
physicists in two important aspects: they limit the flow of possibilities and determine the 
appropriate way to describe the remaining ones”. In the search for the description of the 
world, in science prevails the simplicity, preservation of equilibrium and invariance of 
any change (physical automorphism), in other words, symmetry. Any descriptive 
possibilities, which do not respond to these aspects, are reject in science. Then, through 
the invariance of physical laws with the consideration of physical automorphisms, the 
symmetry in nature is shown. In 1933, Emmy Noether analyzed this through her 
theorems. Krauss (2007, p. 190) affirms, that the physical automorphisms are expressed 
in laws and the laws contemplate equations that govern the behavior of a given system. A 
physical quantity that remains conserved or indiscernible – without preference to any 
spatial or temporal direction – and at the same time invariant in a transformation –
physical automorphism – is expressed in physics as a conservation law. From this point 
of view, in physics when we talk about symmetry, we mean the conservation laws. In this 
way, a physical quantity indiscernible in terms of past and future, without preference in 
temporal directions and invariant in a transformation, is a physical magnitude conserved 
in time. In other words, the symmetrical properties of a physical system are intimately 
related to the conservation laws that characterize the system. 

Krauss (2007, p. 192) affirms that Noether’s theorem states that each symmetry of a 
physical system implies some physical property of the system is conserved. Each 
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conserved quantity has a corresponding symmetry. Noether states this physical quantity is 
the energy independent of temporal directions. In this sense, Noether relates the physical 
magnitude of energy, through a conservation law, in other words: the isometry of time 
corresponds energy conservation. From these ideas of Krauss (2007, p.192), the energy is 
a conserved quantity as a consequence of symmetry in time ‒ as Noether’s theorem 
affirms ‒ and in an analogous way the quantity conserved as a consequence of the 
symmetry of space will be momentum or inertia, that is: the isometry of space 
corresponds conservation of momentum. The conservation of momentum is the principle 
behind Newton’s observation the objects will continue to move uniformly and those at 
rest remain in that state, unless an external force acts on them. 

In the book La noción de Simetría en Física. Una reconstrucción (2008), we 
postulate: if two states are equivalent, the symmetry is shown through an invariant 
quantity (magnitude). For example, in the principle of inertia, the velocity (magnitude) is 
constant for rest and a uniform rectilinear motion. The indistinction between rest and 
uniform rectilinear motion for a local observer (review the classic Newton-Leibniz 
controversy across Samuel Clarke) show the symmetry of space. In other words, the 
speed as space-time magnitude is constant (physical automorphism) in a system at rest or 
in a uniform rectilinear motion (Galileo transformations) showing the symmetry of space. 

5. Considerations 

Finally, any symmetry in a physical system has its corresponding conservation law (and 
vice versa), constituting in this way an explanation of why there are laws of 
conservation and physical magnitudes (physical automorphisms) that do not change 
throughout the temporal evolution of a physical system. This argument is based in two 
basic ideas: (1) The invariance of the physical law with respect to any (generalized) 
transformation preserves the coordinate system (spatial and temporal aspects), (2) The 
conservation of a physical magnitude. In this way, the formal statement of Noether’s 
theorems derives an expression for physical quantities conservation. Thus, (1) The 
invariance of physical systems with respect to translation movement is related with the 
law of conservation of momentum and (2) Invariance with respect to time is related 
with the law of conservation of energy. The result of Noether’s work is far-reaching in 
any physical theory. It reduces everything to analyzing the various transformations that 
would make the form of the laws involved invariant. This important deduction, a 
consequence of the relativistic theory of Einstein, constitutes the turn in contemporary 
physics in relation to the consideration of the notion of symmetry as a principle. 
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Abstract: In this article, we highlight the fundamental role played by three 
female scientists in the discovery of the phenomenon of nuclear fission. We 
point out that a proposal in this sense was advanced since 1934 by Ida 
Tacke Noddack, and then (1938) Iréne Curie Joliot understand that some-
thing was experimentally wrong in the usual interpretation of the production 
of alleged transuranic elements, accepted by all the main nuclear physics 
groups between 1934 and 1939. Finally, it was Lise Meitner (and her neph-
ew Otto Frisch), at the beginning of 1939, the first scientist to realize from a 
theoretical physics point of view the existence of the phenomenon of nucle-
ar fission.  
 
Keywords: Nuclear fission, Slow neutrons, Transuranic chemical elements, 
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1. Premessa 

In lavori precedenti abbiamo fatto notare alcuni importanti aspetti riguardanti la scoperta 
della fissione nucleare mediante bombardamento del nucleo dell’uranio con neutroni lenti 
(Dragoni 1973, Dragoni 2007), in questa occasione vogliamo attrarre l’attenzione del Let-
tore sul singolare ruolo avuto in questa complessa vicenda da tre grandi scienziate: Ida 
Tacke Noddack (1896-1978), Iréne Curie Joliot (1897-1956), Lise Meitner (1878-1968), i 
cui meriti dovrebbero essere adeguatamente riconosciuti nell’ambito della storiografia 
della fisica contemporanea. Naturalmente si inquadreranno brevemente le ricerche nu-
cleari più avanzate all’inizio degli anni ’30, e il ruolo decisivo e fondamentale avuto da 
Enrico Fermi su tutto lo sviluppo e la progressiva conoscenza della fisica nucleare, nono-
stante le critiche che gli furono rivolte sin dal 1934. In particolare parleremo di quelle di 
grande rilievo segnalategli da Ida Tacke Noddack (settembre 1934) e che per ragioni 
“imperscrutabili” non vennero prese nella dovuta considerazione.  

 




