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Abstract: Richard Feynman’s involvement in the Manhattan Project during 
the World War II is well known. He studied instruments and experimental 
devices, being directly involved, for instance, in the study of the “water 
boiler”, a small nuclear reactor designed for experimenting on fundamental 
properties of the chain reaction. In most of such experiments, the necessity 
emerged of feeding the output pulses of counters into amplifiers and various 
other circuitry, with the risk of introducing distortion at each step. To deal 
with this problem, Feynman designed a theoretical “reference amplifier” as 
an idealized device distorting the signal either at the low end or at the high 
one of its responsive range. In such a way, he was able to characterize the 
distortion by means of a benchmark relationship between phase and ampli-
fication for each frequency, thus providing a standard tool for comparing 
the working of real devices. In this contribution, we analyze Feynman’s 
work on amplifier response at Los Alamos, described in a technical report 
of 1946, as well as lectured on at the Cornell University in 1946-47 during 
his course on Mathematical Methods. Such a work later flowed in the 
Hughes lectures on Mathematical Methods in Physics and Engineering of 
1970-71, where also causality properties were pointed out. 
 
Keywords: Amplifier response, Causality property, Hughes lectures. 

1. Introduction 

The involvement of Richard P. Feynman in the Manhattan project (Galison 1998; Feyn-
man 1985) is well known. There, he studied a number of different problems directly re-
lated or not to the making of the bomb. He was initially involved in studying instruments 
and experimental devices, such as for instance the “water boiler", a small nuclear reactor 
designed to experiment on fundamental properties of the chain reaction (Feynman 
1946a). He also developed an integral theorem that allowed to evaluate the distribution of 
neutrons and active material from known distributions, in order to maximize the number 
of neutrons leading to a successful chain reaction (Feynman 1946b). Furthermore, he had 



Marco di Mauro, Salvatore Esposito, Adele Naddeo 

 

60 

to deal with numerical calculations concerning implosion plutonium bombs (Feynman 
1945), rather than uranium ones, this last project being assigned to him by the theory di-
vision leader Hans Bethe, whom he would follow to Cornell University after the end of 
the war. Finally, the most important and difficult project concerned the “hydride bomb", 
which was supposed to work around a uranium hydride core, where the hydrogen atom in 
the hydride would favor the slowing down of neutrons originating the chain reaction, in 
this way consuming less 235U than the ordinary metal bomb (Feynman, Welton 1947). 

Summarizing, Feynman’s work at Los Alamos was mainly concerned with tech-
nical and engineering issues. In most experiments, the basic aim was simply to count 
neutrons emerging from a given reaction, in order to estimate its efficiency, but neutron 
signals were usually so low that an amplifier was required to study them. The practical 
problem with feeding the output pulses of counters into amplifiers and various other 
circuitry was mainly the emergence of distortions at very high and very low frequen-
cies. In order to solve such a problem, instead of studying the details of the different 
amplifiers employed in the different experiments, Feynman designed a theoretical “ref-
erence amplifier" distorting the signal either at the low or at the high end of its respon-
sive range, thus providing a standard against which comparing the real devices. In par-
ticular, he succeeded in characterizing the distortion introduced by means of a bench-
mark relationship between phase and amplification of the signal for each frequency 
component. This interesting work is described in a technical report (Feynman 1946c), 
and later lectured on at the Cornell University in 1946-47, in a course on Mathematical 
Methods in Physics (Feynman 1946d). Here, the problem of deriving the response of an 
amplifier was worked out as an example within a section on the applications of contour 
integration methods and the residue theorem. Finally, the same amplifier problem was 
taken on in 1970-71, within a course on Mathematical Methods in Physics and Engi-
neering, delivered at the Hughes Aircraft Company (Feynman 1971). Here such an is-
sue was further developed with a focus on causality properties of the transfer function, 
succeeding even in deriving the Kramers-Kronig dispersion relations, whose standard 
framework (also considered by Feynman) is the application to the light refractive index 
(Lipson et al 2010). 

In the present contribution, we deal with Feynman's theoretical reference amplifier, 
as inferred from the technical report of 1946, as well as from his Course on Mathemati-
cal Methods in Physics delivered in 1946-47 and finally from his 1970-71 Hughes lec-
tures. The general theory developed by Feynman is highlighted in Section 2, while Sec-
tion 3 is devoted to some theoretical issues he addressed later, concerning the causality 
properties of the amplifier and its link with the dispersion relations technique. Finally, 
in Section 4 some concluding remarks will be presented. 

2. The amplifier response: general theory 

During the development of the Manhattan project it was often necessary to amplify sig-
nals coming from neutron counters or ionization chambers. Usually, such signals are 
composed of different frequencies and, when entering an amplifier, amplification is not 
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the same for all frequency components, thus introducing some distortion in the output 
signal. Phase shifts may as well develop for different frequency components, whose 
behavior as a function of the frequency can be assumed to be linear to a first approxi-
mation (Feynman 1946c). Under such an assumption Feynman was able to neglect the 
time delay and to “sum" a high pass and a low pass filter in order to get a theoretical 
“amplifier" with a behavior similar to that of a real device.  

According to Feynman (1971), an amplifier can be regarded as a black box charac-
terized by the fact that the output voltage EOUT is related to the input voltage EIN by a 
quantity g, a linear function known as the gain of the device:  

 
                                                     (1) 

 
The amplifier was also assumed to be time-invariant: if at time t the output signal F(t) 
is obtained from the input one f(t), this same sample signal in input at a later time t+a 
will produce the same output. A good amplifier is flat over a large region of frequen-
cies, that is amplification is nearly independent of frequency in this region, while, on 
the other hand, for very high and very low frequencies the amplification falls off rapid-
ly. In particular, for high frequencies the amplification follows an inverse power law 
(ω0/ω)k, where ω0 is some characteristic frequency. Similarly, amplifiers with a low-
frequency cutoff have amplification falling off as (ω/ω0)k.  The high-frequency re-
sponse affects the shape of a pulse, its rate of rise and the accuracy with which the 
pulse is followed, while the low-frequency counterpart determines the response over 
long times. Feynman performed a different analysis in these two situations, by consid-
ering two kinds of amplifiers: a first one having only a high-frequency cutoff while it is 
flat for low frequencies, and, conversely, a second one with a low-energy cutoff while 
passing with unit amplification all frequencies. Due to linearity, the effect of a real am-
plifier with both cutoffs can be obtained by letting the pulse pass first through a high-
frequency cutoff amplifier and, then, through a second amplifier with a low-frequency 
cutoff only. 

Feynman's peculiar approach was to study the response of the amplifier to a delta-
function signal, and then constructing the response to a variety of differently shaped 
input signals by considering them as the superposition of a bunch of delta-functions, 
each at a given different time and weighted with a different amplitude (Feynman 
1946c). Thus, for a pulse of general shape f(t), written as the superposition of a very 
large number of delta pulses occurring at different times, the response of the amplifier 
is given by:  

 

                                          (2) 
 
R(t) being the response to the single δ(t) pulse, i.e. a Green’s function. On the basis of 
these assumptions, an input sine wave with constant frequency, EIN = exp(iωt), will 
produce an output with the same frequency, but amplified and phase shifted, EOUT = 
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the same for all frequency components, thus introducing some distortion in the output 
signal. Phase shifts may as well develop for different frequency components, whose 
behavior as a function of the frequency can be assumed to be linear to a first approxi-
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                                          (2) 
 
R(t) being the response to the single δ(t) pulse, i.e. a Green’s function. On the basis of 
these assumptions, an input sine wave with constant frequency, EIN = exp(iωt), will 
produce an output with the same frequency, but amplified and phase shifted, EOUT = 
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A(ω) exp(iωt), where A(ω) is the transfer function of the amplifier. The main focus of 
Feynman’s analysis was just on this quantity.  
In the general case of an input signal built of many frequencies, the output will depend 
on the amplitude of each component, so that integration over all frequencies is required 
in order to get the total output signal EOUT, characterized by the Green’s function:  

 

                                                                  (3) 
 
Summarizing, Feynman deduced the features of an amplifier from its response to a 
pulse or to a sine wave of definite frequency. Given the general expression for R(t), 
Feynman's analysis focused on the behavior of such a function for various choices of 
A(ω) (Feynman 1946c). He also briefly pointed out that a reliable A(ω) for a real ampli-
fier has to satisfy given relations between frequency and phase shift in order to not al-
low output signals occurring before the introduction of an input signal, i.e. all singulari-
ties (poles and branch points) of A(ω) lie on the positive imaginary half of the complex 
plane. Such a mathematically-inspired method was inherited by the famous textbook by 
H.W. Bode (1945), originally written as a technical report for engineers, and subse-
quently turned into a book. Later, however, Feynman developed in more detail this is-
sue in his Hughes lectures on Mathematical Methods in Physics and Engineering 
(Feynman 1971). 

3. Causality and dispersion relations 

A very interesting issue addressed by Feynman (1971) was the causality properties of 
an amplifier, namely the requirement that its response function R(τ) = 0 for τ < 0. Such 
an issue was pivotal in Feynman's approach to the amplifier, as apparent from the fact 
that it is mentioned in the Los Alamos report (Feynman 1946c). 

In general, the concept of strict causality deals with the fact that no output can oc-
cur before the input. It can be conveniently expressed in different forms for different 
physical systems. For a homogeneous refractive medium, for instance, it can be read as 
no signal can be transmitted faster than the speed of light c. Causality reflects itself into 
dispersion relations, which are integral formulas relating a dispersive to an absorptive 
process: they are ubiquitous in physics, ranging from the theory of light dispersion in a 
dielectric medium to the scattering of nuclear particles (Nussenzveig 1972), as well as 
the electrical network theory (Bode 1945). A dispersion relation is expected to hold in 
any theory where the output function of time is a linear functional of an input function, 
the interaction being time-independent, and where the output function cannot manifest 
before the application of the input one. The requirement that no response occurs until 
the application of an input signal can be expressed as (Lipson et al. 2010):  
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                                                                                           (4) 
 
which, upon substituting Eq. (3) and making some manipulations, becomes:  
 

                                                                                        (5) 
 
Thus, the causality condition can be translated by requiring that A(ω) has no singulari-
ties below the real axis in the plane of complex frequencies. A given function exhibits a 
pole for a given complex frequency ω = ωR + iωI when a resonance is present: by ap-
proaching the resonant frequency, the oscillation amplitude becomes infinite for a driv-
ing force with finite amplitude. In this way, the causality principle suggests that the on-
ly way a physical system can achieve an infinite amplitude is as a result of its memory 
of an infinite driving force at some earlier time. 

Finally, when dealing with the properties of the transfer function A(ω), Feynman in-
troduced the concept of dispersion relations in his discussion. Indeed they can be extract-
ed from the causality condition, Eq. (5), for the complex function A(ω) = AR(ω) + i AI(ω):  

 

                                                               (6) 

 

                                                              (7) 
 
In optics, as Feynman noted, the function A(ω) represents the complex refractive index 
of light: its imaginary part describes light absorption by a medium, while the real part 
gives the frequency-dependent refractive index n (a phenomenon known as chromatic 
aberration).  
 
 
4. Conclusions 
 
In this contribution, we have reported on an analysis of Feynman’s work on amplifier 
response performed at Los Alamos and described in a technical report of 1946, as well 
as lectured on at the Cornell University in 1946-47 during his course on Mathematical 
Methods. Such a work later flowed in the Hughes lectures on Mathematical Methods in 
Physics and Engineering of 1970-71, where he also discussed causality properties and 
their equivalence to dispersion relations. Such a work grew out during his involvement 
in the Manhattan Project, where experiments required to feed the output pulses of coun-
ters into amplifiers or several other circuitries, with the risk of introducing distortion at 
each step. These issues were addressed by Feynman through the development of the 
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idea of a theoretical “reference amplifier" able to provide a useful standard in practical 
comparison with real devices. He built up a general theory, relying strongly on the re-
sponse function R(t) of that amplifier (assumed to be linear). In particular he was able 
to find the basic features of an amplifier from its response to a pulse or to a sine wave 
of definite frequency. The main properties of the response function were explicitly 
worked out, starting from the key role played by the causality issue, i.e. certain rela-
tions between frequency and phase shift that a real amplifier has to satisfy in order not 
to allow output signals to appear before input ones. Finally, Feynman pointed out the 
equivalence between causality property and dispersion relations to be satisfied by the 
response function, probably inspired by similar issues in different physical contexts. 

From our analysis, once more one can see the original approach of Feynman to sci-
entific problems at work in a quite unusual field of application. 
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Abstract: It is well-known that Dirac suggested a quantization of Classical 
Mechanics by means of an analogy between classical Poisson brackets and 
commutation relations. Morchio and Strocchi suggested a rigorous deriva-
tion of this quantization by finding out, independently from Dirac’s previ-
ous works, a new algebraic structure which characterizes both kinds of Me-
chanics as two representations of this structure, distinguished by a dichoto-
mous variable Z, whose value 0 represents the case of Classical Mechanics, 
whereas the value ih/2π represents Quantum Mechanics. No longer Classi-
cal Mechanics can be considered as the limit of Quantum Mechanics for h 
→ 0; and these theories have to be considered as mutually incommensura-
ble. The nature of this incommensurability is investigated; in particular, it is 
compared with the incommensurability between two formulations of classi-
cal Mechanics, i.e. Newton’s and Lazare Carnot’s.  
 
Keywords: Quantum Mechanics, Dirac’s quantization, New algebraic struc-
ture of Quantum Mechanics, Incommensurability of two divergent Mechan-
ics, Problem-based theory. 

1. Introduction  

Dirac had an advantage with respect to most theoretical physicists; he well-knew Ham-
ilton formulation of Classical Mechanics (CM), which at his time was undervalued and 
put aside. (Jammer 1989, p. 236) It enjoys extraordinary properties. Equipped with ca-
nonical variables the Hamiltonian is independent from the system of reference. Moreo-
ver, its basic operation is the Poisson brackets (PB), through which this formulation 
translates all basic operations of calculus; e.g. the derivative of a physical magnitude k, 
the case of time included, is equal to a PB of the Hamiltonian H and this magnitude k 
with respect to the two variables of the phase space; hence all differential operations of 
Hamiltonian dynamics are represented by an algebraic structure of the PBs. In other 
terms, no other formulation of theoretical physics enjoys a strong link between physics 
and mathematics as Hamiltonian formulation through its PB algebraic structure. In ad-
dition, it is remarkable that this link concerns what is more advanced in both branches 
of science, i.e. Mechanics and Mathematics. This fact suggests to attribute to the Ham-




