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Abstract: I concentrate on the pars destruens, rather than the pars construens, of 
Selleri’s work on the Sagnac effect. He speaks (2003) of the “impossibilità di spiegare 
la fisica sulla piattaforma ruotante con la TRS”, and may have a point. By confining 
our attention to the world-cylinder above a circle on the disk we avoid broader 
integrability issues that just cause confusion. A rate of rotation foliates the cylinder 
into timelike spirals, and also into the simultaneity spirals hyperbolically orthogonal 
to them; together the two foliations give rise to all sorts of temporal absurdities. 
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Introduction 

Selleri’s work on the Sagnac effect suggests that rotation is enough to produce relativistic 
temporal absurdities − the effect can be accounted for in the laboratory frame, but not with 
respect to the very disk on which it is produced. 

Simultaneity in relativity is relative to the velocity of the observer; different observers 
foliate space-time in different ways. Simultaneity can be understood globally, “rigidly”: a 
timelike four-vector V0 at, say, the origin of flat space-time M can be taken to foliate all of 
M into flat simultaneity surfaces hyperbolically orthogonal to V0. Or it can be understood 
locally: a timelike vector Vx    TxM at x     M foliates the tangent space TxM into simultaneity 
subspaces of a local character. The metric 

ηb : TxM  → Tx
∗M 

turns a vector Vx into the covector V b = ηbVx whose level surfaces themselves foliate TxM 
into simultaneity spaces; a timelike vector field V on M is thus transformed into a one-form 
V b on M representing a distribution of simultaneity spaces. But do the local spaces fit 
together so as to make global sense, yielding a broadly valid notion of time? Are they 
integrable? Can they give rise to anholonomies, absurdities, departures from integrability 
that prevent a satisfactory account of the Sagnac effect as seen from the disk? 

2. Cylinder 

A rotating disk is bound to complicate or obstruct integration. But many integrability issues 
just cause confusion; to simplify, we can confine our attention to a single circle Cr ‒ say of 
radius r = 1 ‒ of the disk, and to the world-cylinder C = C1   M it describes. Each tangent 
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space TxC is a two-dimensional subspace of TxM; the vector Vx can be replaced by the 
projection Vx   TxC characterised by a (length and) polar angle ϕ, which vanishes for the 
laboratory. The corresponding simultaneity line Lx(ϕ̄) ⊂ TxC is a ray with polar angle 

     π 
ϕ̄ ≡ 2 − ϕ, 

where the bar expresses the hyperbolic orthogonality (‘ϕ ⊥ ϕ̄’) due to the signature of η, 
and light travels at ± π/4. The projection Vb ∈ T ∗C of the covector V b foliates TxC into 
lines parallel to Lx(ϕ̄). So a given rate of rotation induces a double foliation of C: into the 
spiral lines 

A(ϕ) = {Am(ϕ)}m 

along the vector field V; and into the corresponding simultaneity lines 

S(ϕ̄) = {Sn(ϕ̄)}n, 

all of which are everywhere orthogonal to the spirals of A(ϕ). The real numbers m and n 
somehow parametrise the spirals of their respective foliations. We can use Cartesian 
coordinates (x, y, z, t)L in the laboratory frame, confine the disk to the plane where z 
vanishes, and stipulate that the distinguished spirals A0(ϕ) and S0(ϕ̄) pass through (1, 0, 0, 
0)L ; the other values of m and n can then be times in the lab frame. 
Alternatively we can use coordinates (α, r, z, t)L  ,,where the azimuth α vanishes at (1, 0, 
z, t)L . If α is used to parametrise the spirals of the two foliations we can use the same symbols 
A0(ϕ) and S0(ϕ̄) for the same distinguished spirals, which both pass through the event 

(0, 1, 0, 0)L’ ↔ (1, 0, 0, 0)L . 
But time on its own isn’t enough to parametrise everything, nor is the azimuth. The 
laboratory’s simultaneity circles 

S(0̄) = {St(0̄)}t 

can be parametrised by the lab time t, whereas the azimuth is best for a parametrisation of 
the vertical worldlines 

A(0) = {Aα(0)}α. 

We’re already in trouble: the rotating observer following A0(ϕ) cuts the simultaneity spiral 
S0(ϕ̄) at (1, 0, 0, 0)L , and periodically thereafter (and indeed before); the intersections are 
both simultaneous and successive; but how can they be? 

3. Sagnac 
Einstein (1916) considers an optical pulse Π emitted from the middle σ of a train carriage. 
Even if, seen from the station, Π reaches the trailing end first, it reaches both ends at the 
same time with respect to the motion of the train ‒ and if the rays are reflected back from 
the ends, they return to the source σ at the same time. 
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Sagnac’s experiment amounts to bringing the ends of Einstein’s carriage together by 
bending it into a circle, say C1: light rays from a common source are sent around a rotating 
disk in opposite directions; an interference pattern − which can be taken to measure rotation 
− indicates the phase difference when the rays return to the source. Selleri (2001, 2003, 
2004, 2012) contended that standard relativity theory, with its relativity of simultaneity, 
cannot account for the effect with respect to the very disk on which it is produced. 

Einstein’s neatly intersecting straight worldlines get bent in our cylindrical environ-
ment, where the rays rise along the various local light cones (or rather   π/4 “crosses”     TxC) 
and intersect periodically, “every half-lap”; all of which is invariant and has nothing to do 
with the rotation of the disk. Without rotation, the second optical intersection µ (after a full 
lap) falls on the source’s line A0(0), where the azimuth vanishes. Rotation splits the single 
intersection µ into two separate intersections, µc & µa: anticlockwise rotation, for instance, 
makes the source’s spiral A0(ϕ) intersect the clockwise ray, at  

µc ∈ Stc (0̄), 

before the anticlockwise ray, at 

µa ∈ Sta (0̄). 

4. Lapse 

The intersections µc & µa are simply events, invariant spatiotemporal events, which are 
independent of any particular foliation or representation of time. But once we want to 
evaluate the time elapsed between them, we need to embed them in an appropriate temporal 
structure, to extract pure time from space & time. The laboratory provides one foliation, 
which gives one answer 

∆t = ta − tc 

for the lapse, where ta and tc are the time values of the lab circles Sta (0̄) and Stc (0̄). But 
even Einstein’s pulse reached the trailing end first with respect to the train station; so far, 
rotation offers nothing new. 

Suppose we confine our attention to the two intersections µc & µa, ignoring the rest of 
the cylinder and any global issues that may arise. The spiral segment γ joining them, of 
length λ, is short enough to be well approximated by the tangent vector γ̇  ∈ Tµc C of the 
same length 

λ = ඥ𝜂(𝛾˙, 𝛾˙)  
The time lapse 

∆τ  = (Vb, γ̇) 

will be given by the covector Vb  Tµ* C representing the local temporal structure 
corresponding to a certain rate of rotation. This lapse will in fact have a double dependence 
on the rate: it is after all rotation that splits µ and pushes apart µc & µa in the first place; 
and the time lapse ∆τ between two intersections can then be calculated with respect to the 
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very rate ϕ that produced the separation, or even to any other rate ϕ’. To be explicit one 
could write 

∆τ (ϕ, ϕ’) = ⟨V𝑏(𝜙’), 𝛾˙ (𝜙)⟩ . 
Even if the disk is spinning so fast that the spiral segment γ between µc & µa is too curved 
to be well approximated by the tangent vector γ̇ , the intersections are still contained in a 
simply connected region on which the temporal one-form Vb is closed; so that whatever 
integration may be needed to evaluate the lapse ∆τ won’t cause trouble (by producing 
anholonomies). 

But there’s more to the cylinder than just the intersections µc & µa. Even if one insists 
on viewing the evaluation of ∆τ (ϕ, ϕ) as a largely local matter, the rest of the cylinder is 
still there, with its troublesome orthogonal foliations A(ϕ) and S(ϕ̄) − which can be used to 
generate all sorts of absurdities: Every spiral Sn(ϕ̄) represents a particular instant; every 
turn of the spiral, for instance every intersection of Sn(ϕ̄) with Aα(0), therefore represents 
the same instant. So µa, or any other event, happens before it happens − being below all the 
subsequent turns in the same spiral − and also after it happens − being above all the previous 
turns in the same spiral. By manipulating and combining such temporal absurdities one can 
give the intersections µc & µa a time lapse, with respect to ϕ’ (for instance ϕ’ = ϕ), of both 
signs and every size. Ex absurdo quodlibet. 

The right not to look beyond µc & µa seems questionable; and the opposite right − to 
look beyond the two intersections − is hard to deny if insisted upon. So at best there is a 
choice: to ignore almost all of the cylinder, or not. 

5. Final remarks 

To avoid the problems Selleri had in mind, almost all reference frames would have to be 
ruled out: rotating frames? all accelerated, curvilinear frames? Leaving only coordinate 
systems that diagonalise (with   1) the Minkowski metric η? 

Special relativity has always been a theory of flat space-time; in the early years severe 
restrictions on reference frames were sometimes added, even by Einstein himself. But it has 
since emerged, certainly since Kretschmann (1917), as a theory whose flat space-time can 
be described by a large class of generally curvilinear coordinate systems. Selleri’s work on 
the Sagnac effect obliges us, it would seem, to impose the most awkward restrictions on the 
class of reference frames − if the relativity of simultaneity is not to be given up altogether. 

Three stances come to mind: 
 

1. We just evaluate the lapse ∆τ locally (with respect to some rate ϕ’ or other), 
confining our attention to µc & µa (a single tangent space, or little more) 
− ignoring the rest of the cylinder, and all the temporal absurdities it 
involves. 

2. We rule out almost all reference frames, keeping only a handful. 
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3. We exhume the æther Einstein got rid of, assigning it the only foliation 
allowed and giving up the relativity of simultaneity. 
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